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ABSTRACT 

This work develops and tests the viability of a new framework for producing short-range 

(<20 h) probabilistic fog predictions using post-processing of a 4-km, 10-member 

Weather Research and Forecasting (WRF) ensemble configured to closely match the Air 

Force Weather Agency Mesoscale Ensemble Forecast System.  The raw WRF predictions 

produce excessive forecasts of zero cloud water, mainly caused by a negative relative 

humidity bias, which is largely traced to a warm overnight bias.  Post-processing 

mitigates these systematic errors by leveraging traits of a joint parameter space in the 

predictions to modify individual ensemble members not predicting fog on their own.  The 

method is generally most effective when the space is defined with a moisture parameter 

and a low-level stability parameter.  

 Cross-validation shows the method adds significant overnight skill to predictions 

in valley and coastal regions compared to the raw WRF forecasts, with modest skill 

increases after sunrise.  Post-processing does not improve the highly skillful raw WRF 

predictions at the mountain test sites.  Since the framework addresses only systematic 

WRF deficiencies and identifies parameter pairs with a clear, non-site-specific physical 

mechanism of predictive usefulness, it is transferable without the need for recalibration, 

and therefore does not require any observational record to employ. 
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I. INTRODUCTION  

With varying frequency, fog occurs nearly globally, and in certain locales occurs 

regularly enough to significantly disrupt military operations.  Visibility is reduced to less 

than 1 km wholly or partially due to fog on an average of 53 days each year at Tyndall 

Air Force Base, FL, 52 days each year at Kunsan Air Base, South Korea; and 24 days 

each year at Kabul International Airport, Afghanistan.  This does not include instances of 

lighter fog that do not result in visibility <1 km but can still impact operations.  At any 

given location away from an airfield, where reliable, consistent observations do not exist, 

the frequency of fog will differ from that at the nearest airfield, especially in mountainous 

or coastal terrain.  Although the body of research for fog prediction in these more remote 

locales pales in comparison to work done at airfields and airports (see review by Gultepe 

et al. 2007), the disruption to military operations can be just as significant. Weapons 

selection, targeting, intelligence collection, search-and-rescue operations, and low-

altitude helicopter transit are all impacted by fog, yet regularly occur some distance from 

the nearest airfield. 

A visibility >7 miles generally does not cause major disruption to most military 

operations, and this is the highest value Department of Defense (DOD) airfields are 

required to report (i.e., any visibility >6.5 miles is normally reported as 7 miles).  It is 

also the threshold below which a DOD weather observation is required to report the cause 

of the restriction (e.g., fog, haze, precipitation); as a matter or nomenclature, a visibility 

>6.5 miles is simply referred to as “unrestricted”.  Numerous thresholds below 6.5 miles 

also have operational significance because they dictate restrictions on certain aircraft 

types and equipment, pilot level of experience, etc., and these restrictions can vary 

depending on the type of airspace or mission involved. Meaningful thresholds exist as 

low as ¼ mile for certain helicopter operations, but in most cases, 1 mile or ½ mile is 

sufficient as the lowest needed threshold for operational decision-making.  Products in 

the Air Force Weather Agency’s (AFWA) Mesoscale Ensemble Prediction Suite (MEPS) 

that relate to visibility provide threshold exceedance probabilities at visibilities of 5 

miles, 3 miles, and 1 mile. 
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The goal of this research is to investigate the viability of a new framework for 

producing short-term (<20 h) stochastic visibility-in-fog (VIF) predictions using existing 

mesoscale ensemble output, suitable for use in data-denied areas away from existing 

airfields.  To do so, the framework examines ensemble predictions from an ensemble 

configured to closely match MEPS, assesses two primary sources of error in the output, 

and explores methods to understand and mitigate the error to arrive at more skillful 

visibility predictions.  The next chapter will introduce some background and inherent 

challenges of visibility prediction, including an account of previous and current 

techniques that set the stage for the approaches tested here.  Chapter III details the data 

used in this research.  Chapter IV closely examines the numerical weather prediction 

(NWP) output and characterizes two primary sources of error affecting its skill.  Chapter 

V describes the methodology used to develop several approaches to mitigate the error, 

and Chapter VI presents the results of testing these approaches.  Finally, Chapter VII 

provides a summary and recommendations, as well as suggestions for future research. 
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II. BACKGROUND 

A. STATISTICAL PREDICTION METHODS 

Statistical prediction methods have shown great promise for the prediction of 

various weather elements to include VIF.  Perhaps the most widely-used example of this 

is Model Output Statistics (MOS; Glahn and Lowry 1972), which was originally 

developed by applying regression equations to NWP model output so the output is 

statistically calibrated at designated locations. Vislocky and Fritsch (1997) excluded 

model data altogether, applying regression on observations, nearby observations, and 

climatic terms to produce 0–6 h visibility forecasts that outperformed persistence.  Jacobs 

and Maat (2005) somewhat combined these approaches by using nearby observations and 

NWP output, as predictors to produce skillful ceiling, visibility, and wind forecasts at 

Amsterdam’s Schiphol airport. This framework was advanced by Ghiradelli and Glahn 

(2010), who used it at hundreds of sites in the U. S. to develop predictive equations for 17 

variables as part of the Localized Aviation MOS Program (LAMP).  With an eye toward 

improving temperature, dewpoint, and wind forecasts at non-airport instrumented sites 

(e.g., national parks, sports stadiums, etc.) Hilliker et al. (2010) used statistical regression 

to effectively calibrate forecasts from the National Digital Forecast Database, which itself 

is NWP model output that has been modified by National Weather Service (NWS) 

forecasters. Most recently, Chmielecki and Raftery (2011) performed Bayesian Model 

Averaging, a kind of statistical calibration that assigns weighting to each member of an 

ensemble of NWP models, to improve the visibility prediction skill in the northwestern 

U. S. 

Besides regression, other statistical prediction methods have been used with 

success.  The Federal Aviation Administration’s (FAA) National Ceiling and Visibility 

product (NCV) uses a decision tree framework to assimilate surface and satellite 

observations and combine them with model data to make ceiling and visibility predictions 

to 12 h (Herzegh et al. 2006).  Bankert and Hadjimichael (2007) also used a decision tree 

construct to data mine output from the Rapid Update Cycle (RUC) NWP model to 

produce ceiling height forecasts at New York’s John F. Kennedy Airport.  Marzban et al. 
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(2007) built a neural network from NWP output and surface observation that, when used 

to make ceiling and visibility forecasts at 39 U. S. airports, collectively outperformed 

MOS.  Bremnes and Michaelides (2007) tested with good results an ensemble of neural 

networks, trained from surface observations only, to produce short-term visibility 

forecasts.  Taking this statistical method further, they improved the 6-h forecasts by using 

the predictions from each member of the ensemble of neural networks as inputs for a 

subsequent neural network.  Hall et al. (2010) developed a framework that searches an 

archive to find analogs to the real-time surface and satellite observations in order to make 

forecasts out to 5 h that were shown to outperform persistence.  

Regardless of the set of predictors used, each of these techniques requires a robust 

archive of observations (to include adequate occurrences of heavy fog if this is to be a 

focus of the tool), in order to develop, or train, the tool.  For this reason, highly statistical 

approaches are most useful for airfields and other locations with a long observational 

record; in many cases, they produce skillful, inherently calibrated predictions that 

outperform NWP predictions alone.  But such tools become less skillful as the available 

observational record for the desired location is decreased, and transferring a highly 

calibrated technique to a new location will result in less skill due to different location-

specific behavior.  An example of this is the Fog Stability Index developed by Freeman 

and Perkins (1998), which uses a regression equation from NWP model predictions of 

several 2-m parameters (temperature and dewpoint) and 850-mb parameters (temperature, 

dewpoint, and wind speed) to predict VIF in Hungary.  Later, Dejmal and Novotny 

(2011) found the index showed poor skill at certain Czech Republic locations, and could 

be outperformed simply by using near-surface dewpoint depression as a predictor instead. 

An additional drawback for highly statistical methods is that their effectiveness is 

dependent on their inputs being relatively stable over time, meaning there are no major 

changes or updates to the platform from which they originate.  For example, a tool that 

relies on MOS output as a predictor is degraded by platform changes to MOS that 

occurred during the training period.  Likewise, after the tool has been completed, its 

calibration becomes suboptimal as future changes to the MOS platform are made, 

resulting in decreased skill. 
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B. PHYSICAL PREDICTION METHODS 

Physical prediction methods rely only on uncalibrated NWP output, placing full 

confidence in the NWP model’s ability to simulate the phenomenon of interest.  Since 

visibility is not explicitly included in NWP output, it is also necessary to include a 

visibility parameterization to convert the output to the visibility parameter(s) of interest.  

In a purely physical method, the visibility parameterization uses strictly first principles 

for the computation, and excludes any ancillary predictors that do not have a direct 

physical linkage to visibility.  The advantages of this utopian approach are particularly 

noteworthy for the unique challenges posed by military operations.  As long as NWP 

output is available, the framework can be applied, with no requirement for observations.  

Also, since first principles are valid everywhere, there is similarly no need for any 

training or calibration of the visibility parameterization.  The risk of encountering a 

location not well represented in a training dataset (a ubiquitous concern for statistical 

methods) is negated. 

C. HYBRID METHODS AND “PERFECT PROG” 

In practice, a purely physical approach to VIF prediction is unviable to the 

difficulty of a visibility parameterization that only uses first principles, which would 

require the summing of scattering effects on visible light from millions or billions or 

individual, non-uniform, suspended water droplets.  Due to the complex nature of such a 

process, as well as the fact that most NWP models are not designed to provide the needed 

inputs, the visibility parameterization almost certainly must involve some statistical 

aspects (that is, it must be parameterized to some degree). 

However, the first requirement of a physical prediction method – placing full 

confidence in the NWP output, and therefore leaving it uncalibrated – is feasible for some 

applications and is known as the perfect prog assumption.  Many authors have 

experimented with VIF prediction using the perfect prog assumption, coupled with a 

simple visibility parameterization using one or two variables (i.e., liquid water content) 

from the NWP output.  Geiszler et al. (2000) tested a 9-km resolution version of the 

Coupled Ocean / Atmospheric Mesoscale Prediction System model over coastal 
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California in this way, finding the results had little skill.  Two suggested reasons given 

for the poor performance were a lack of aerosol information in the NWP model, and poor 

representation of model topography.  The first of these explanations could implicate not 

just the NWP output, but also the visibility parameterization, because aerosol information 

would only improve the predictions if it was adequately processed by a more 

sophisticated visibility parameterization.  The second of these explanations suggests a 

shortcoming of just the NWP model. 

Qualitatively, Zhou et al. (2009) obtained better results than Geiszler et al. (2000) 

when applying the same simple visibility parameterization to NWP output from the 32-

km horizontal resolution, 21-member Short Range Ensemble Forecast system produced 

by the National Centers for Environmental Predictions (NCEP).  Although formal 

verification was not performed, the authors believed limited objective evaluations 

conducted by local forecasters were promising. 

While still using the perfect prog assumption, another common approach to VIF 

prediction is to apply a more statistically-generated visibility parameterization, 

sometimes by data mining observational data, to the NWP output.  This is the approach 

used for visibility predictions from MEPS, which has a visibility parameterization 

developed from regression on a one-year training dataset of RUC analyses at thousands 

of U. S. locations.  The predictors used are total column precipitable water, 10-m wind 

speed, and 2-m relative humidity (RH) (Kuchera 2011; Kuchera 2011, personal 

communication).  The AFWA deterministic (non-ensemble) WRF NWP model also uses 

this strategy, although with a different visibility parameterization that primarily relies on 

RH as a predictor (AFWA Model Analysis Team 2004).  Zhou and Du (2010) used the 

perfect prog assumption on a 15-km resolution, 10-member ensemble and applied a 

visibility parameterization developed to make a yes/no radiation fog prediction based on 

liquid water content (LWC), 10-m wind speed, 2-m RH, and cloud top and base heights.  

In a test region in eastern China, they found the predictions were more skillful than when 

the visibility parameterization used LWC only.  Similarly, Gultepe and Milbrandt (2007) 

showed that a visibility parameterization utilizing LWC, 2-m RH, 2-m temperature, and 

satellite data (an observational input) outperformed one using only LWC as a predictor. 
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Since these more complex visibility parameterizations are tuned for an entire 

training domain instead of for individual sites, they tend to perform well when verified 

over large regions.  However, since the predictors are heavily mined and/or only have an 

indirect physical linkage to visibility, they may not perform well at individual sites or 

even in certain climates that are different from the mean climate of the training data.  

Furthermore, it is not immediately clear from these studies to what extent error in the 

predictions is due to deficiencies in the visibility parameterization as opposed to 

deficiencies in the NWP model output. 

D. STRIKING THE PROPER BALANCE FOR DATA-DENIED REGIONS 

Striking the proper balance between a statistical and physical approach in VIF 

prediction suitable for DoD operations is an overarching theme of this research.  

Conceptually, a physical approach (using both the perfect prog assumption and a 

physical-based visibility parameterization) is most advantageous because it does not 

require observations and is transferable to anywhere model data are available.  After 

separately examining error from the NWP output and from the visibility 

parameterization, we will show that under most conditions, the introduction of statistical 

components is necessary to obtain skillful predictions.  These additions must be done 

judiciously and conservatively, such that they do not result in location-specific calibration 

but instead serve to mitigate the impact of certain persistent deficiencies in the NWP 

output.  Additionally, exploring the tie between the statistical components introduced in 

this work and the physical reasoning behind why they work helps to focus future NWP 

and VIF prediction research efforts.  It also makes the framework more adaptable to 

incremental improvements in the NWP platform. 

In the FAA’s NCV product, Herzegh et al. (2006) interpolated between surface 

observations in the U. S. to help produce the initialization state, which likely improves 

the skill of the predictions during the first few hours.  While a similar approach is feasible 

in many parts of the world with an adequate observation network, others have sparse 

networks with hundreds or thousands of kilometers between reliable surface observation 

sites (e.g., North Africa, parts of Central Asia), and so this strategy is not used in this 
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work.  Satellite observations may also be used to provide an observational element (e.g., 

Herzegh et al. 2006, Guidard and Tzanos 2007, Gultepe et al. 2009a, Hall et al. 2010), 

but these techniques struggle to distinguish ground fog from low clouds, especially at 

night, and are not included here. 

By excluding an observational element in this VIF prediction framework, we 

likely sacrifice potential gains in skill (relative to persistence) during the early hours of 

the predictions.  This concept was discussed by Ghiradelli and Glahn (2010), whose 

LAMP paradigm is to combine observations with MOS to increase the skill of MOS most 

during the first few hours, and more modestly thereafter (Figure 1).  Vislocky and Fritsch 

(1997) noted that their observation-only statistical technique outperformed MOS until 6 

h, with MOS having higher skill beyond that time.  Furthermore, even with a 

sophisticated assimilation process, statistically-derived products such as NCV usually 

struggle to beat persistence during the first 4–6 h, with the noted exception of the 

analogue techniques of Hansen (2007) and Hall et al. (2010).  It is worth noting that 

observational inputs are not completely excluded in an NWP-only framework since that 

they are obviously part of the NWP model assimilation process.  Indeed, the multi-

agency Joint Center for Satellite Data Assimilation is a dedicated research office that 

examines assimilation of satellite observations into NWP models, albeit with a broad 

focus as opposed to focusing specifically on VIF initialization and prediction.  

Regardless, existing research on NWP model and data assimilation in general seeks to 

provide the best possible initialization field, using all available observational sources and 

techniques as warranted. This research seeks ways to best leverage the NWP output 

derived from existing mainstream assimilation processes, instead of examining the 

assimilation itself. 
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Figure 1.   Notional concept of the LAMP paradigm, which combines observations with 
MOS to yield the most improvement over MOS during the first few hours.  The 

improvement over MOS is more modest at later hours.  (From Ghiradelli and 
Glahn 2010). 

E. ADDITIONAL CONSIDERATIONS 

 Using a conceptual model of VIF prediction that includes two distinct sources of 

error, it is worth considering how using an ensemble system (as opposed to a single 

deterministic NWP model) fits into this conceptual model.  Perhaps it is best to recognize 

that every WRF run will have error whether it is a deterministic run or a member of an 

ensemble, but the benefit of using an ensemble is to be able to sample at least part of that 

error so that it may be better understood and incorporated into a decision process by the 

end user.  (For a general history and summary of ensemble forecast systems, see Kalnay 

2003; for a real-world example of the cost-benefit of using an ensemble for ceiling and 

VIF prediction in the airline industry, see Keith and Leyton 2007).  While the primary 

focus here is to identify and adapt for deficiencies in the WRF that result in prediction 

error in individual integrations, we perform this analysis in the context of an ensemble for 

several reasons.  First, since each member of the ensemble varies not only in initial 



 10

conditions (IC) but also in physics suites (the ensemble setup is detailed in Chapter III), 

we can be more confident that consistent errors occurring in every member are likely to 

be attributable to a systematic WRF deficiency rather than due to a particular physics 

configuration or errors in the IC.  Secondly, MEPS and other ensembles are already in 

wide use in DOD and elsewhere, and so we limit the operational value of our findings if 

we examine NWP VIF prediction errors without also considering and measuring the 

ensemble dispersion characteristics of those errors; that is, the degree to which the 

members tend to collectively sample the errors.  By using deterministic verification 

techniques, we will show that the WRF output in MEPS is subject to systematic 

deficiencies that will negatively impact its skill in VIF prediction but can be improved 

with the addition of a conservative statistical component to the framework.  Although the 

aim is not to revisit the design of the ensemble itself in this work (i.e., number of 

members, perturbation strategies, etc.) typical probabilistic verification practices are used 

to demonstrate how the skill of the MEPS is impacted by this work’s findings, with the 

understanding that probabilistic verification measures are affected by both the errors from 

individual WRF members and ensemble dispersion shortfalls. With little modification, 

the methodology and results developed here could just as well be applied to deterministic 

WRF output to reduce error and improve skill, albeit without the benefit of error 

sampling an ensemble provides. 

 Furthermore, the focus on systematic WRF deficiencies rather than individual 

member behavior is quite different from an ensemble calibration, which Eckel and Mass 

(2005) suggested should be performed separately on each member.  Recent history 

suggests MEPS members will continue to be periodically added, deleted, and modified in 

attempts to improve some aspect of prediction (but not necessarily always improving VIF 

prediction), so addressing the observed systematic deficiencies demonstrated by most or 

all of the members represents the most impactful, enduring contribution toward achieving 

our aim.  Instances where individual member behavior is particularly noteworthy will be 

highlighted to help inform future research on NWP development, particularly with regard 

to planetary boundary layer and microphysics parameterizations. 



 11

 Besides error from NWP predictions and from visibility parameterizations, other 

sources of error exist that will not be thoroughly examined in this work but warrant 

consideration.  In their work, Geiszler et al. (2000) alluded to error incurred by using a 

single model grid point for verification. Known as subsubgrid-scale variability or 

representativeness error, this error stems from the fact that the NWP predictions represent 

average values in a model grid box, yet the verifying observations are taken at a single 

point within that box.  Even for the 4-km model grid used in this research, smaller-scale 

fog structure exists within the grid square that will contribute to error when verification is 

performed against a point observation.  This research will not closely investigate subgrid-

scale variability, but it is briefly examined and discussed in Chapter IV to gauge its 

potential impact.  Where examined, it was not believed to substantially affect the results.      

 Observation error can be defined as the measurement error of a given instrument 

or procedure.  In an ensemble verification, Hacker et al. (2011) found that ignoring 

observation error had the effect of making the ensemble appear less dispersive than it is, 

which can in turn affect its overall skill.  It is not as crucial to address observation error 

when performing comparative verification since it affects all techniques relatively equally 

over time, and it will not be considered in this work.  Nevertheless, the challenges 

inherent in gathering VIF observations mean observation error is likely to be greater than 

what might be expected for verification of temperature, for example.  These challenges 

are documented in the next chapter. 

  Three other previous studies helped inform the setup and approach ultimately 

used in this research.  Bang (2006) tested deterministic VIF predictions for a heavy fog 

case at Incheon, South Korea using both the Weather Research and Forecasting (WRF) 

model and Fifth-Generation Penn State/NCAR Mesoscale Model (MM5) at various 

horizontal grid spacing from 54 km to 2 km.  The high-resolution WRF predictions were 

the most skillful, lending promise to the prospects of using MEPS, which is based off of 

4-km grid spacing WRF runs, for this work. They found the WRF model runs tended to 

underforecast fog, and dissipate it too rapidly. 

 Tardif (2007) examined the impact of NWP model vertical resolution on radiation 

fog prediction at the Paris-Charles De Gaulle airport.  Using a sophisticated 1-D model 
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designed specifically for fog (COBEL), he found having more vertical layers near the 

surface improved the timing of fog onset, which tended to be delayed in the lower-

resolution experiment due to the inability to create a shallow fog layer, resulting in 

inadequate radiative cooling (note that fog droplets have higher longwave emissivity than 

unsaturated air, and therefore will cool a layer more quickly when present).  When 

increasing the resolution isn’t possible, he suggested examining radiative cooling rates in 

the NWP model for signatures that may assist with radiation fog initiation.  The lowest 

model level in MEPS (about 20 m above ground level) is even higher than the lowest 

model level in the low-resolution COBEL case (about 12.2 m above ground level), and 

we will show that similar behavior was observed. 

 Lastly, Zhou and Ferrier (2008) described a process for obtaining LWC values 

during radiation fog events by explicitly solving the governing equation that describes 

LWC as a function of turbulent exchange coefficient, droplet gravitational settling flux, 

condensation rate due to cooling, and height of the fog layer.  Verification of the 

technique during an observed fog event was promising, and the authors suggest the 

technique could be successfully utilized to adjust the initial LWC predictions provided by 

NWP predictions if the NWP model is able to provide accurate predictions of the 

dependent variables.  Our research examined the prospects for such an approach in 

MEPS, but as we will show, it would not provide large skill improvements due to the 

high number of cases in MEPS of missed fog, for which the fog depth is zero and the 

technique maintains zero LWC. 

F. VISIBILITY PARAMETERIZATIONS 

 The traditional role of an NWP microphysics scheme is to predict water vapor and 

hydrometeor mixing ratios.  In the last decade, these single-moment schemes (termed 

such because they predict only one parameter – the mixing ratio – for each species) have 

been joined by double-moment schemes, which make physics-based predictions of 

hydrometeor size distribution in addition to mixing ratio.  In some cases, this double-

moment capability is reserved only for precipitation species (Thomspon et al. 2008), but 

others include predictions of cloud water droplet distribution that are based on turbulence 

and instability parameters (Morrison et al. 2005), or cloud condensation nuclei 
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concentration, if available (Lim and Hong 2010). For a more complete history of how 

microphysics scheme capabilities have evolved, see Seifert (2009). 

 Many operational NWP models and ensemble systems being run at large centers, 

to include MEPS, have not yet assumed the additional complexity and computational 

expense needed to implement double-moment schemes.  Instead, in the single-moment 

schemes in widespread use, the shape of the size distribution is held constant.  To 

overcome this deficiency without compromising the essence of a first principles 

approach, the experiments in this research will use as a launching point two visibility 

parameterizations that rely only on the crucial variable available in the NWP output (i.e., 

liquid water mixing ratio), yet were developed with the benefit of field measurements. 

 Before describing the visibility parameterizations, note that both rely on inputs of 

cloud water mass concentration in units of g m-3.  This is different from the liquid water 

mixing ratio provided in most NWP output, which is in units of kg kg-1.  To avoid 

confusion, this research will always refer to cloud water in terms of the mass 

concentration in units of g m-3, denoted by the symbol qc.  In addition, note that each 

parameterization provides output in terms of extinction coefficient, βe, which is different 

from visibility yet will be used as the verifying parameter in this research.  The reason for 

this choice, as well as the relationship between βe and visibility, are explained in the next 

chapter.      

1. Stoelinga and Warner 1999 

 Kunkel (1984) used in-situ measurements of 11 fog events to measure 

microphysical properties of droplets, and formulated a relationship between qc and βe 

used by Stoelinga and Warner (1999), hereafter SW99, as part of a case study in NWP 

ceiling and visibility prediction.  It has been widely used in numerical weather prediction 

applications ranging from limited research experiments (e.g., Geiszler et al. 2000, Bang 

2006, Chmielecki and Raftery 2011) to inclusion in the FAA’s NCV product (Herzegh et 

al. 2006) and the NCEP Very Short Range Ensemble Forecast (Zhou et al. 2010), and is 

often referred to as the Stoelinga and Warner parameterization when used in this context:   

 e  144.7(qc )0.88,  (1) 
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where βe is in km-1.  

2. Gultepe 2006 

 More recently, Gultepe et al. (2006), hereafter G06, used field measurements 

from the Radiation and Aerosol Cloud Experiment (RACE) to also prepare a relationship 

between qc and βe: 

 e  178.6(qc )0.96  (2) 

 More precise visibility parameterizations exist that incorporate additional 

variables, yet still maintain a physically-based foundation because all the inputs have a 

direct physical link to visibility.  Gultepe et al. (2006) showed from the RACE data that 

incorporating both qc and cloud droplet number concentration, N, into the 

parameterization provides a better fit to the observed βe.  The importance of N in VIF lies 

in the fact that, for a given value of qc, many smaller droplets have a larger total cross-

sectional area, and therefore a larger βe, than fewer larger droplets (Koenig 1971, 

Brenguier et al. 2000, Gultepe et al. 2006).  However, like cloud droplet size distribution, 

N is normally held constant in most current microphysics schemes, including each 

scheme used in MEPS (see Skamarock et al. 2008 for a summary of each scheme as well 

as additional references describing their details).  Therefore, using the more sophisticated 

parameterization without skillful predictions of N has no added benefit over the G06 

parameterization in equation (2).  Several techniques have been proposed to estimate N 

when it is not given by the NWP output, to include using the airmass characteristics 

(Clark et al. 2008), predicted temperature (Gultepe and Isaac 2004), or predicted level of 

supersaturtaion combined with airmass characteristics (Bott and Trautman 2002).  Since 

in this work we do not have verifying observations of either qc or N, attempting to 

separately account for uncertainty in these variables would be highly ambiguous.  

Instead, we will quantitatively examine uncertainty in the single-parameter visibility 

parameterizations given by (1) and (2), with the impacts of N reserved for qualitative 

consideration. 
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III. DATA 

A. NWP OUTPUT 

To maximize the operational utility of the findings, the ensemble system used for 

this research is configured to match that of the AFWA MEPS as closely as possible.  The 

details of the MEPS configuration are based on work by Hacker et al. (2011a), hereafter 

H11, in which several methods of producing IC and physics perturbations were examined 

with a goal of finding “the most skillful ensemble, with the least degree of complexity” 

such that it would be operationally viable given typical computational restraints.  As with 

most operational NWP models, incremental changes have since been made to the MEPS 

configuration, but the basic setup exists as it did when it was closely replicated to create 

the runs for this research in late 2010 (Kuchera 2011, personal communication).  The 

configuration used for the runs is described below, with further details and justification 

available in H11. 

The ensemble consists of 10 WRF (ARW version 3.2) members with 4-km 

horizontal grid spacing and 42 vertical sigma levels.  This high-resolution domain is 

nested within a larger 12-km grid spacing middle nest, which in turn is nested within a 

larger 36-km grid spacing outer nest.  Each member obtains its ICs and lateral boundary 

conditions (BC) from a different member of NCEP’s Global Ensemble Forecast System 

(GEFS, Wei et al. 2008).  H11 found that this method of direct dynamical downscaling 

from a global NWP model to create ICs did not perform as well as when more advanced 

methods, such as an ensemble-transform Kalman filter, are used.  However, given the 

low computational expense and implementation in MEPS, it is used here. For its part, 

GEFS is constructed from the Global Forecast System (GFS) NWP model using an 

ensemble transform (ET) technique (Bishop 1999) that accounts for regional differences 

in analysis error variance from the operational 3D-var scheme by including regional 

scaling of the initial perturbation (H11). 

Certain properties of the lower boundary (land surface) are assigned a different 

value in each member based on random draws from -like distributions, with distribution 
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parameters selected based on physical arguments and empirical data.  These properties 

are the albedo, soil moisture availability, and roughness length, and the values assigned to 

each member do not change throughout the experiment.  This technique was described by 

Eckel and Mass (2005), and led to small error reductions in lower tropospheric 

predictions when tested by H11 compared to when they were not used. 

 NWP model uncertainty can be considered distinct from IC or BC uncertainty in 

that it arises from, among other things, imperfect parameterizations of subgrid-scale 

processes (microphysics, planetary boundary layer fluxes, deep convection), radiative 

forcing (shortwave and longwave), and land-surface fluxes. Running a unique 

combination of parameterizations for each member is one way to sample this uncertainty, 

ultimately resulting in more skillful predictions.  This approach was promoted by Eckel 

and Mass (2005), and H11 demonstrated its importance for near-surface predictions, 

stating the technique “appears critical for probabilistic prediction in the PBL (planetary 

boundary layer).”  The specific parameterization combinations (hereafter called “physics 

suites”) should not be selected arbitrarily because some suites that were not tuned 

together during their development can produce unreasonable and even unstable 

predictions (H11).  The 10 suites used in this work are given in Table 1.  They are the 

same as those used in H11, although they are numbered differently, which is explained as 

follows.  During the testing of various suites, H11 initially identified 20 that appeared to 

be most viable (stable, and producing reasonable predictions), later selecting the best 10 

for inclusion, which are the 10 used here.  However, in this work, the member number, 

which has no meaning aside from identification purposes, is from its number in the 

original 20.  References for the physics options are found in Skamarock et al. (2008). 

The cumulus parameterization listed in Table 1 is used on the middle- (12-km 

grid spacing) and outer- (36-km grid spacing) nests only; no cumulus parameterization is 

used for the 4-km inner nest. 

The period of the study is from 21 November 2008 through 21 February 2009, 

with NWP runs initialized every three or four days to minimize highly-correlated cases.  

In all, 29 ensemble runs were performed.  Each run was initialized at 0000 UTC, and the 

output was compiled at hourly intervals out to 20 h.  Although the 0-h water vapor field 
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in each ensemble member is downscaled from its parent member from the global 

ensemble suite, solid and liquid water phases are not initialized.   

Table 1.   Summary of physics suite used for each member. 

Member Microphysics PBL Shortwave Longwave
Land 

Surface 

Cumulus 
(none on 

inner-most 
nest) 

1 Kessler YSU Dudhia RRTM Thermal KF

5 WSM6 MYJ CAM RRTM Thermal KF

7 Kessler MYJ Dudhia CAM Noah BM

8 Lin MYJ CAM CAM Noah Grell

10 WSM5 YSU Dudhia RRTM Noah KF

11 WSM5 MYJ Dudhia RRTM Noah Grell

15 Lin YSU Dudhia CAM RUC BM

16 Eta MYJ Dudhia RRTM RUC KF

17 Eta YSU CAM RRTM RUC BM

19 Thompson MYJ CAM CAM RUC Grell 

Since cloud water is the primary field of interest in the study of fog, the first six 

hours of each case are evaluated with caution to account for the spin up of the field to a 

stable state, and these hours are not included in certain parts of the verification where 

noted.  As previously discussed, given the NWP-only nature of this framework, skillful 

predictions during the first few hours are not an emphasis of this work, and so we mainly 

focus on the 6–20 h prediction timeframe (2200–1200 LT) representing short-term 

operational planning. 

 Figure 2 shows the domain of each of the three nests.  Verification focuses on 

seven airfields (Figure 3) in California and Nevada representing three regions with 

distinct mesoscale influences: Crescent City (airport identifier KCEC, elevation 17 m) 

and Arcata (KACV, 66 m) represent a coastal region as both are less than 1 mile from the 

Pacific Ocean; Stockton (KSCK, 9 m), Modesto (KMOC, 29 m), and Merced (KMCE, 57 

m) represent a valley region subject to frequent and heavy overnight radiation fog; and 

Emigrant Gap (KBLU, 1610 m) and Reno represent a mountainous region, with both 
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sites at relatively high elevations and surrounded by mountainous terrain. The NWP 

predictions for any given level at these seven sites are obtained by bi-linearly 

interpolating from the four grid points laterally surrounding each station.  In most cases, 

NWP values from the lowest model layer or the 2-m level are of most interest.  The 

lowest model layer (hereafter layer 1) exists at a height of 19–21 m above the model’s 

ground level.  WRF post-processing computes 2-m values of temperature and water 

vapor from the heat and moisture fluxes provided by the PBL scheme using the flux-

profile relationship (Stull 1988). 

 

Figure 2.   Domain of the three nests for WRF runs.  (From Hacker et al. 2011b). 
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Figure 3.   Location of verification sites (with elevation in meters).  (Map background 

courtesy of Europa Technologies, Google, and INEGI 2011). 

B. OBSERVATIONS 

1. Physical Description of Visibility 

 Each of the seven airfields used for verification is instrumented with an 

Automated Surface Observing System (ASOS), which is maintained by NWS, FAA, and 

DOD.  ASOS is the primary observation system in the U. S. in use at hundreds of airports 

and other sites (NWS 1999).  Except in rare instances such as equipment malfunction or 

visibilities less than 0.125 mi, visibility observations are left to the ASOS’s fully 

automated procedure, which utilizes measurements from a forward scattering sensor 

(Office of the Federal Coordinator for Meteorological Services and Supporting Reserarch 

2005).  The sensor consists of a flash lamp projector, which flashes a cone of visible light 

twice each second, and a detector.  The detector is situated outside the lamp’s projection 
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cone (Figure 4) so that the amount of pulsed light it receives is dependent on the 

collective forward scattering coefficient of the scatterers in the sample volume (National 

Oceanic and Atmospheric Administration/DOD/FAA/U. S. Navy 1998). Visibility is 

actually a function of the total extinction coefficient, βe, but the other components of 

extinction (backward scattering and absorption) are comparatively negligible compared 

to the forward scattering.  Therefore, the system assumes the measured forward scattering 

coefficient is also an accurate estimate of the total extinction coefficient (British 

Atmospheric Data Centre 2006). 

  

Figure 4.   Top view schematic of the ASOS visibility sensor.  Not shown is the integrated 
ambient light sensor.  (From National Oceanic and Atmospheric 

Administration/DOD/FAA/U. S. Navy 1998). 

 Even with an accurate estimate of βe, estimating the true visibility is quite 

complex.  Consider for example the FAA definition of visibility: “The ability, as 

determined by atmospheric conditions, to see and identify prominent unlighted objects by 

day and prominent lighted objects by night” (FAA 2012).  The ability to see and identify 

objects during the daytime is a matter of detecting the contrast, C, between the object and 
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its background.  Middleton (1954) defines this quantity as the ratio of the brightness 

difference between the object and background, and the brightness of the background: 

 C  (B  B ') / B '   (3) 

where B is the brightness of the object, and B′ is the brightness of the background.  As 

viewed by an observer from a given distance, r, the apparent contrast, Cr, can be written 

in terms of the apparent object brightness, Br, and the background brightness: 

 Cr  (Br  B ') / B '   (4) 

Note that equation (4) uses the same background brightness, B′, as equation (3) instead of 

using an “apparent” background brightness.  This is because the assumption is made that 

the background is an infinite (flat-earth) atmosphere, and therefore the background 

brightness does not change regardless of r (Koschmieder 1924).  The maximum 

reportable visibility for most ASOS stations is 10 mi, so the flat-earth, constant 

background brightness assumption is reasonable. 

 Duntley (1948) showed that the quantity |Br – B′| varies exponentially with 

distance as: 

 (Br  B ')  (Bo  B ') exp( e

0

r

 dr) (5) 

By combining equations (3), (4), and (5), we can obtain an expression for the ratio of the 

apparent contrast at distance r to the actual contrast at distance zero.  Middleton (1954) 

called this quantity the contrast attenuation: 

 
Cr

Co

 exp( e

0

r

 dr) (6) 

 Several less-precise assumptions are made in equation (6) to produce a visibility 

observation.  First, the contrast attenuation does not directly indicate whether an object at 

distance r is visible.  As mentioned earlier, the visibility of an object is determined by 

whether or not Cr is large enough to be detected by the observer.  Objects with large 

values of Co, such as an all-black target against a white sky, will also have larger values 

of Cr from any given distance than will a lighter object, even though the objects will have 

the same contrast attenuation.  As r increases, Cr for the lighter object will eventually 
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become too small to be detected.  The darker object, however, will remain visible until a 

greater distance is reached such that its value of Cr also becomes too small.  Therefore, 

daytime visibility depends on the brightness of the object being viewed, and is greater for 

objects with a brightness significantly different than the background brightness (note that 

bright objects can also have large values of Co if viewed against a darker background, 

such as an overcast sky).  The fact that visibility is object-specific is not just a limitation 

with automated instrumentation, as a human observer viewing landmarks of various 

brightnesses is subject to this same complication.  Nevertheless, in order to use equation 

(6) in an all-purpose visibility application such as ASOS, a reference value of Co must be 

established.  For ASOS, this reference value is 1, which can be thought of as 

corresponding to perfectly black reference object.  

 Next, the exact threshold of Cr below which an object is no longer visible will 

vary based on the individual and also the size of the object.  Based on several laboratory 

and field experiments detailed in Middleton (1954) and elsewhere, values between 0.02 

and 0.065 are typically used in the literature.  ASOS uses a conservative value of 0.05 

(Belfort Instrument 2005). 

 The last complicating assumption discussed here arises from the fact that βe is 

only measured at the instrument and not over the entire path length.   Therefore, it must 

be assumed the measured value is representative of the entire path. 

 By applying the three assumptions above, Equation (6) simplifies to 

 0.05  exp(ert ) ,  (7) 

where rt is the threshold distance at which the object is no longer visible.  Solving for rt 

results in the daytime visibility algorithm used in ASOS: 

 rt 
3

e

  (8) 

 The ability to see and identify lighted objects, which defines nighttime visibility, 

involves slightly different physics than the daytime derivation. If the object has luminous 

intensity Io, the illuminance, Er, at any distance is defined by Allard’s law: 
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 Er 
Io exp( e dr

0

r

 )

r2   (9) 

 

As with Cr during the daytime, there exists a critical threshold value of Er below which 

the light is no longer detected.  This threshold value, Et, varies based on several factors, 

including the background luminance (Rasmussen et al. 1999).  Using data from field 

testing of the first airport transmissometer, Douglas and Booker (1977) noted Et is also 

affected by the distance between the observer and the source because at closer range, the 

glow from the source itself has a detrimental effect on the observer’s ability to detect the 

source.  Empirically, they estimated this relationship as: 

 Et 
0.052

r
, (10) 

Replacing Er in equation (9) with the expression for Et in equation (10) and simplifying 

results in the expression 

 0.052 
Io

r
exp( e dr

0

r

 )
,
 (11) 

with βe in km-1 and r in km.   

 An additional simplification is made by assuming the light source has luminous 

intensity, Io, of 25 candelas (Rasmussen et al. 1999).  Finally, by assuming homogeneity 

of βe along the path, we may eliminate the integral as we did in the daytime derivation.  

The result is the ASOS nighttime visibility algorithm (Belfort Instrument 2005): 

 rt 
6.2  ln rt

e

  (12) 

Unlike the daytime algorithm, the nighttime algorithm is implicit, and therefore must be 

solved iteratively for rt given βe.   

 Traditionally, βe is expressed in km-1 and visibility, rt, in miles.  In Table 2, the 

ASOS daytime and nighttime equations are summarized in modified form to account for 

this mismatch of units. 
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 During the verification or calibration of any fog prediction scheme in which post-

processed visibility observation are used, failing to distinguish between the daytime and 

nighttime regimes can be a large source of error.  For a given value of βe, the daytime 

algorithm produces visibilities at least 20% lower than the nighttime algorithm in the 

visibility range of interest (<6.5 mi).  The difference is larger at low visibilities, with 

daytime visibility barely half as large as a nighttime visibility of 1 mi (Figure 5). 

 Which algorithm is used depends on a separate ambient light sensor included in 

ASOS.  The ambient light threshold determining day or night is very low (between 5 and 

30 lux), such that the nighttime algorithm is normally only used when the sun is several 

degrees below the horizon or lower (National Oceanic and Atmospheric 

Administration/DOD/FAA/U. S. Navy 1998, Waynant and Ediger 2000).   

Table 2.   ASOS daytime and nighttime visibility algorithms.  (After Belfort 
Instrument 2005). 

Day rt (miles) 
1.862

e(km1)
   

Night rt (miles) 
5.7  lnrt (miles)

1.609 e(km1)
  

 

 

Figure 5.   Comparison of results from the ASOS nighttime and daytime visibility algorithms 
when computed with the same extinction coefficient.  (From Rasmussen 1999). 
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 The precision of visibility reports increases as visibility decreases.  Computed 

visibilities greater than 2.75 miles are rounded to the nearest mile, between 1.875 and 

2.75 are rounded to the nearest half-mile, and between 0.125 and 1.875 are rounded to the 

nearest quarter-mile.  If the computed visibility is below 0.125 miles, it is normally 

supplanted by a more precise value from a human observer, if available.  Otherwise, it is 

simply reported by ASOS as being less than one-quarter mile (National Oceanic and 

Atmospheric Administration/DOD/FAA/U. S. Navy 1998). 

2. Processing of Visibility Observations 

 It is preferable to use βe as the verifying parameter since it is the measured 

quantity.  When helpful for interpretation or comparison with other techniques, results 

will be converted to visibility using the appropriate ASOS algorithm from Table 2.  

While the uncertainty existing in the conversion of βe to visibility is perhaps a significant 

source of error, it will not be the focus of this research.  In addition to the several 

imperfect assumptions detailed above, producing visibility observations in practice is also 

subject to error from differences in the shape or color of the objects or lights being 

viewed, the viewing angle with respect to the horizon, and the position of the sun.  Some 

of the assumptions made to mitigate these are necessitated by the use of automated 

instrumentation, and some are required even with a human observer simply due to the 

nature of the measurement. 

 Raw, one-minute βe observational data for the seven verification sites was 

obtained from the National Climatic Data Center website (2011).  In order condense this 

data into a single hourly βe observation suitable for verification, the 10 βe values during 

and prior to the top of each hour (spanning 10 min) were averaged.  Other measured 

parameters, such as temperature, dewpoint temperature, wind direction, and current 

weather condition were taken directly from the official METAR observation. 

 The basic process used by ASOS to determine the current weather condition plays 

a critical role in preparing the data and is summarized in Figure 6.  As with all ASOS 

measurements, the process is completely automated except during equipment malfunction 

or other extenuating circumstances (e.g., smoke in vicinity, presence of a funnel cloud, 
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etc.). In the overwhelming majority of cases, any reduction in reported visibility to below 

7 mi as measured by the forward scattering sensor can be ascribed to precipitation (of 

some form), mist, fog, or haze.  Precipitation is detected by the ASOS precipitation gauge 

and reported accordingly, regardless of the visibility.  Independently, if the reported 

visibility is <7 mi and the dewpoint depression is <2.2 K, mist or fog is reported.  The 

distinction between mist and fog is one of severity; fog is used if reported the visibility is 

<0.625 mi, while mist is used otherwise (hereafter, both will be called fog for simplicity).  

Note that fog and precipitation can be reported together if both conditions are met.  

Lastly, if the reported visibility is <7 mi but the dewpoint depression is >2.2 K, haze is 

reported, unless precipitation is also reported, in which case the precipitation takes 

precedence (National Oceanic and Atmospheric Administration/DOD/FAA/U. S. Navy 

1998). 

 

Figure 6.   Summary of basic logic used by ASOS to determine present weather.  Only the 
aspects of the logic relevant to this research are shown. 
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 This logic makes the following the assumptions that must be deemed acceptable 

before using the observations as ground truth: 

 Fog and haze cannot coexist 

 If the reported visibility is <7 mi, the dewpoint depression is <2.2 K, and it is not 

precipitating, then fog must be present 

 Determining the presence of fog based only on the visibility and dewpoint 

depression may seem a crude approximation but it is consistent with a lack of distinction 

between fog, haze, and mist. Automated instrumentation aside, the distinction between 

haze and fog is quite inexact.  Haze is defined as aerosol particles that “increase in size 

with relative humidity”, but not so large that they reach their activation radii, at which 

point they would become mist droplets (American Meteorological Society 2012).  The 

exact RH at which this occurs depends on the aerosol characteristics (Rogers and Yau 

1989), and cannot possibly be known in every case.  If the RH remains high enough, the 

droplets will continue to grow and eventually be classified as fog droplets.  The ASOS 

dewpoint depression threshold of 2.2 K (which corresponds to an RH of 80–90% in most 

cases) is likely to be below the activation threshold of most haze particles (Rogers and 

Yau 1989).  Referring to haze, mist, and fog, the American Meteorological Society 

Glossary (2012) states “there is no distinct line…between any of these categories”.  

Given the indistinct transition between haze and fog from an observational standpoint, 

the ASOS logic seems reasonable.  At worst, some instances of moist haze whose 

particles have not yet reached activation radii but are causing a visibility restriction will 

be misclassified as fog. 

 Once the hourly reports of temperature, dewpoint temperature, wind direction, 

and present weather have been combined with an hourly βe value, additional processing is 

needed to isolate just the contribution of fog to the measured βe.  First, any observation 

with βe <0.29 km-1 (approximately corresponding to daytime visibility of 6.5 mi and 

nighttime visibility of 8 mi), is simply classified as a no-fog case.  In these cases, the 

actual value of βe is not retained because 1) except for precipitation, ASOS does not 

report the phenomenon responsible for any reduction in visibility, and 2) it is outside the 

range of visibilities relevant for most DoD operations. 
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 Next, since haze and fog cannot coexist, any observation reporting haze is also 

classified as a no-fog case, even if βe>0.29 km-1.  In these cases, βe is reassigned a value 

of 0.10 km-1, an arbitrary figure that simply ensures these observations are not confused 

with cases of fog. 

 Finally, observations with βe>0.29 km-1 and precipitation occurring were removed 

from the dataset al.together, even if fog was also reported.  For a given βe, the relative 

contributions of fog and precipitation are inseparable in this case.  

 After the filtering described above, the remaining observations are those with 

βe>0.29 km-1 due to fog alone, thus comprising the fog cases of the verification dataset.  

In these cases, the βe value was preserved. 

 A small percentage of the verification data did not fit into one of the above 

categories and required special treatment.  If a nighttime observation reported a βe value 

in the range 0.29-0.37 km-1 with no precipitation, no present weather was normally 

reported since this βe range corresponds to reported visibilities >7 mi using the nighttime 

algorithm and subsequent rounding.  In these cases, the present weather was deduced to 

be either haze or fog using the same dewpoint depression criteria used by ASOS.  

 The processing of the hourly βe observations is summarized in Figure 7. 
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Figure 7.   Summary of the processing of the hourly observations to isolate the effects of fog 
on the observed βe values. 
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IV. ASSESSING VISIBILITY PREDICTIONS 

A. NWP ERROR VERSUS VISIBILITY PARAMETERIZATION ERROR 

1. Parametric Visibility Parameterization 

 To understand the relative impact of error in the NWP model predictions of qc 

versus error in the visibility parameterization, a simple parametric visibility 

parameterization was developed to account for uncertainty in the field measurements 

used to formulate the SW99 and G06 visibility parameterizations.  The specific goal is to 

roughly qualify the errors that may result from imperfect empirical relationships between 

βe and LWC.  Development proceeded without the raw datasets from Kunkel (1984) and 

G06, but was instead done by estimating characteristics of the data from the 

corresponding published scatter plots (Figure 8).  The end result is therefore considered 

an approximation of the true uncertainty in the data, and is sufficient for the conclusions 

drawn here. 

 
Figure 8.   Scatter plots of field measurements from (left) Kunkel (1984) showing βe vs qc 

and (right) Gultepe et al. (2006) showing visibility vs qc. The regression line 
shown in the left plot represents the Stoelinga and Warner (1999) visibility 

parameterization, and the thin dotted line in the right plot is the regression line 
expressing the Gultepe et al. (2006) visibility parameterization. 
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 Kunkel (1984) and G06 both fit empirical relationships to datasets mainly limited 

to visibility <1 mi, leaving open the fit to smaller values of LWC and βe.  Examination of 

the plots in Figure 8 reveals neither dataset has any measurements when qc is less than 

about 0.01 g m-3, which corresponds to a daytime visibility of 0.7 mi and 0.9 mi using the 

SW99 and G06 visibility parameterization, respectively.  This calls into the question the 

widespread use of the SW99 visibility parameterization during “light” fog conditions, 

loosely defined as fog producing visibilities in the range of 1–7 mi, which are of prime 

importance for DOD operations. Kunkel (1984) mentions this, noting that previous 

investigators (Tomasi and Tampierir 1976, Pinnick et al. 1978, and Eldridge 1971) 

obtained different (although not consistent) results in “observations of smaller droplets in 

lighter fogs”.  Still, the datasets in Figure 8 are used here due to various limitations in the 

older studies (e.g., instruments not able to measure all droplet size spectra), and in the 

case of the Kunkel (1984) data, its widespread use in modern NWP applications. 

 Uncertainty in the visibility parameterizations is represented by the spread of the 

data about the regression line in each scatter plot.  To approximate this degree of spread, 

multiple points along the outer edges of the data envelope in each scatter plot, i.e., those 

furthest from the regression line, were transcribed to a new plot (Figure 9).  Since the 

G06 data in Figure 8 are plotted as visibility, they are converted to βe prior to being 

replotted in Figure 9 by dividing the constant -ln(0.02) by the visibility.  This conversion 

is slightly different than the ASOS conversion given in equation (8), but is consistent 

with what G06 used to compute the visibilities plotted in Figure 8.  A nighttime 

conversion is not needed, as all the G06 data was collected during daytime.  The portion 

of the data taken in very heavy fog events with qc >0.1 g, corresponding to daytime 

visibilities of <0.1 mi, is not included.  The fits to the data are unphysical at greater qc, 

where the lines eventually intersect. 

 The SW99 visibility parameterization is used to compute the mean value, e , at 

any given qc in the parametric visibility parameterization because it is based on a dataset 

that has more measurements in light fog conditions than the G06 data, and it is in 

widespread use.  It is also used as the baseline comparison throughout this research.  Both 

the SW99 (solid blue line) and G06 (solid black line) visibility parameterizations are 
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represented on the plot in Figure 9 and produce similar results in the qc range shown.  

The two dashed lines define the approximate edges of the data envelope, with only a few 

points in either dataset falling outside this region.  By definition, ~99.5% of the data 

should fall within three standard deviations, 3σ, of the mean value, e , and so the dashed 

lines appear to offer a reasonable estimate for this range. 

 

Figure 9.   Plot of selected data from Kunkel (1984) and Gultepe et al. (2006).  The two solid 
lines through the middle are regression lines for each data set, and represent the 

Stoelinga and Warner (1999) visibility parameterization (blue) and the Gultepe et 
al. (2006) visibility parameterization (black). 

 Examination of the Kunkel (1984) data in Figure 8 suggests the distribution of the 

data about the regression line at any given value of qc is not Gaussian but heteroscedastic 

since it has a greater spread toward higher βe values than it does toward lower values (the 

G06 data shows a similar pattern when qc is plotted against βe instead of visibility).  This 

assertion is also apparent by the asymmetric shape of the data envelope about the 

regression lines in Figure 9.  To more accurately account for the shape of this spread, the 

data are fitted to a log-normal distribution, where the shape of the spread of ln(βe) values 

is considered to be Gaussian about the value ln(e ) for any given qc.  The data in Figure 

9 have been replotted in Figure 10 using ln(βe) as the y-axis. Symmetry of the 3σ lines 

about the regression lines representing ln(e ) supports the notion of using a log-normal 
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distribution for the data.  Lines representing 2σ and 1σ above and below ln(e ) are also 

shown in Figure 10.  The right panel in Figure 10 shows the same data using a linear y-

axis once again.  It is zoomed in to show only qc values < 0.01 g m-3, which corresponds 

to approximate daytime visibilities > 0.7 mi, and is the range of interest for this research, 

despite there being no observations in this range in either dataset. 

 

Figure 10.   Left panel shows same data as in Figure 9, but plotted using ln(βe) as the y axis.  
The dashed lines represent one, two, and three standard deviations above and 
below the Stoelinga and Warner (1999) visibility parameterization (solid blue 

line).  Right panel uses βe as y-axis, and is zoomed in to show only the qc range of 
interest. 

 The probability density function (PDF) of the log-normal distribution takes the 

form 

 prob density(e, ', ') 
1

e ' 2
exp 

(lne   ')2

2( ')2







,  (13) 

where μ’ and σ’ are the mean and standard deviation, respectively, of ln(βe).  The spread 

of the βe probability density is greater for larger values of qc as illustrated in Figure 11, 

showing the PDF of βe for two values of qc.  The full PDF as a function of only βe and qc 

is given in Table 3, along with other key expressions used to formulate the parametric 

visibility parameterization.  Recall that the expressions developed here only used data 

when qc <0.1 g m-3; the results are not valid at larger values of qc (where σ eventually 

decreases and becomes unphysically negative). The precise shape of the PDF when qc 

>0.1 g m-3 is not crucial for this research, and in that range its shape is held constant by 
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setting σ = 2.2 and only allowing e  to change.  Once an individual PDF is constructed 

for each member, an ensemble PDF for the entire suite of members is formed by adding 

together the individual PDFs, and normalizing by dividing by 10, the total number of 

members in the ensemble suite. 

 

Figure 11.   Parametric PDF of βe values for qc values of 0.00085 g m-3 (blue line), and 0.0083 

g m-3 (black line).  e  for these PDFs is 0.29 km-1 and 2.1 km-1, corresponding to 
approximate daytime visibilities of 6.5 mi and 0.875 mi, respectively. 

 An example of the result of this process is illustrated in Figure 12, which is from 

the ensemble prediction at KSCK at 29 January 2012 1800 UTC.  In this forecast, five of 

the members have predicted non-zero qc, and their corresponding PDFs of βe are shown 

with solid blue lines.  Four of the members predicted a very heavy fog event with βe >15 

km-3, while one member predicted a lighter event.  Five members predicted zero values of 

qc and therefore have no PDF drawn.  The resulting ensemble PDF from this forecast is 

shown with a dotted black line.  The probability of exceedance for any given βe threshold 

predicted by the ensemble is obtained by integrating the ensemble PDF for the desired 

interval.  In Figure 12, the predicted probability for βe >2.1 km-3 (corresponding to an 

approximate daytime visibility of 0.875 mi) is 0.4012, essentially because four of the ten 

members have their PDFs almost entirely above this threshold, while the member 

predicting lighter fog has only a small portion of its PDF above the threshold.  As another 
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example, the predicted probability of βe >0.29 km-3 (corresponding to an approximate 

daytime visibility of 6.5 mi) is 0.4929 because all five members have nearly their entire 

PDFs above this threshold. 

Table 3.   Summary of key expressions related to parametric visibility 

parameterization.  Except for μ' and e , expressions are valid only for qc 
<0.1 g m-3.  

μ'  '  0.88 ln(qc ) 4.975  

σ'  '  0.11ln(qc ) 0.1437

PDF(βe, qc)  
prob density 

1

e 2 (0.11ln(qc ) 0.1437)
exp 

(lne  0.88 lnqc  4.975)2

2(0.11ln qc  0.1437)2





  

e (qc) 

(same as SW99 
visibility 

parameterization) 

e  144.7qc
0.88

   

e (qc) + 1σ(qc) 
e  125.3qc

0.77
 

e (qc) - 1σ(qc) 
e  163.4qc

0.99
 

e (qc) + 2σ(qc) 
e  108.6qc

0.65
 

e (qc) - 2σ(qc) 
e  184.2q1.10

 

e (qc) + 3σ(qc) 
e  255.7qc

0.54
 

e (qc) - 3σ(qc) 
e  207.9q1.20
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Figure 12.   PDFs for ensemble prediction of βe at KSCK for 29 January 2012 1800 UTC 
based on each members’ qc forecast.  Five members predicted non-zero qc, and 

their corresponding PDFs are plotted with solid blue lines.  The ensemble PDF for 
the entire suite of members is plotted with a dashed black line. 

2. Skill Scores 

 As a baseline performance metric, the Brier Skill Score (BSS) of the ensemble 

predictions is computed at four βe thresholds corresponding to daytime visibilities of 

approximately1 6.5, 4.5, 2.75, and 0.875 mi.  The BSS is obtained by comparing the Brier 

Score of the forecasts to the Brier score of a reference forecast, which for this research is 

persistence. 

 The persistence forecast is defined as the condition observed at the initialization 

time of the forecast preserved unchanged through the remainder of the forecast run.  As 

noted previously, observations reporting an elevated βe due to precipitation were removed 

from the dataset.  However, when precipitation was occurring at the initialization time of 

an NWP run, it is necessary to categorize the observation as either above or below the βe 

threshold of interest so the persistence forecast can be defined (even though the 00-h 

observation itself is still excluded from the results).  In these cases, the persistence 

forecast was categorized as meeting the βe criteria if the 00-h observation had a dewpoint 
                                                 

1 These thresholds are approximate due to uncertainty in the relationship between βe and visibility.  
The SW99 visibility parameterization is used to estimate the proper βe thresholds for the visibilities. 
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depression <2.2 K (following the logic used by ASOS) and the observed βe was above 

the threshold of interest.  If either of these conditions were not met, the persistence 

forecast was categorized as not meeting the βe criteria. 

 Following Wilks (1995), the Brier Score can be decomposed into reliability, 

resolution, and uncertainty, and these are also shown.  A Ranked Probability Skill Score 

(RPSS), which is similar to BSS except it combines the performance at all four thresholds 

into a single metric, is also computed.  Each of the relevant metrics is described in Table 

4.  

 Except for RPSS, verifying metrics for all sites combined are provided in Figure 

13.  In order to assess the relative impact of NWP model error versus visibility 

parameterization error on the final predictions, two sets of results are shown on each plot: 

the results using just the deterministic SW99 visibility parameterization (solid blue lines), 

and the results using the parametric visibility parameterization (dashed black lines).  The 

same metrics are provided separately for the coastal, valley, and mountain regions in 

Figures 14, 15, and 16, respectively.  The RPSS for all regions combined and each 

individual region are shown in Figure 17. 

 As a broad summary of Figures 13–17, the NWP predictions show increasing skill 

with forecast hour compared to persistence, with the most skill in the mountain region 

and the least skill in the valley region.  A close examination of these results follows in 

subsequent sections; for now, note that in nearly every plot in Figures 13–17, the results 

when the SW99 visibility parameterization was used are indistinguishable from when the 

parametric visibility parameterization was used. 

 The lack of visibility parameterization uncertainty at the four tested thresholds is 

evident in virtually every metric and region.  The first-order error in βe prediction from 

the ensemble is from the NWP predictions of qc, and the conversion of qc to βe plays a 

negligible role.  This does not mean visibility parameterization error is absent, only that it 

is unimportant given the magnitude and nature of the qc predictions from the NWP 

model.  The following section will examine the qc prediction errors, and reveal why this 

is the case. 
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Table 4.   Description of metrics used to assess stochastic predictions from the 
ensemble.  

Metric Formula Description Best Score Worst Score 

Reliability  

1

M
Ni ((pe ')i  oi )2

i1

I

  

 

Measures how well a given 
forecast probability 

matches the observed 
frequency of occurrence 

0 1 

Resolution 
1

M
Ni (oi  o)2

i1

I


 

Measures degree to which 
ensemble, through its 

probability forecasts, can 
parse data into subsamples 

having frequency of 
occurrence different from 

overall climatological 
frequency 

Uncertainty 
score 

0 
(frequency of 
occurrence in 

every 
subsample = 

overall 
climatological 

frequency) 

Uncertainty o(1 o)
 

Does not depend on 
forecast, only on 

climatological frequency; 
indicates level of difficulty 

in obtaining resolution 

N/A – but scores may range 
from 0 (event occurs 0% or 

100% of time, so no 
resolution possible) to 0.25 
(event occurs 50% of time, 

maximizing potential 
resolution score) 

Brier Score 
Reliability – Resolution + 

Uncertainty 

Combines reliability and 
resolution to summarize  

overall ensemble accuracy 
0 1 

Brier Skill 
Score 

(relative to 
persistence) 

1
Brier Score

Brier Scorepersistence

 

Measures overall stochastic 
skill of ensemble at 

particular threshold.  Value 
of 0 indicates forecast is no 

better or worse than 
persistence forecast. 

1 -∞ 

Ranked 
Probability 
Skill Score 
(relative to 
persistence) 

1
Brier Scorek

k1

T



Brier Scorepersistence 
k

k1

T

  

Combines multiple 
thresholds to indicate 

overall stochastic skill of 
ensemble.  Value of 0 
indicates forecast is no 

better or worse than 
persistence forecast. 

1 -∞ 

M = number of forecast/observation pairs 
I = number of probability bins (11) 
N = number of data pairs in bin i 
pe’ = center of forecast probability bin (0.025, 0.1, 0.2, 0, … 0.7, 0.8, 0.975) for bin i 
ōi = observed relative frequency for bin i 
ō = climatological frequency (total occurrences / total forecasts) 
T = number of event thresholds 
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Figure 13.   Ensemble reliability (left column), resolution (center column), and Brier Skill 
Score (right column) at four different βe thresholds: 0.29 km-1 (top row), 0.41 km-

1 (center row), 0.68 km-1 (third row), and 2.10 km-1 (bottom row). Forecast 
uncertainty is also shown on the resolution plots. 
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Figure 14.   Same as in Figure 13, but only for the coastal sites. 
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Figure 15.   Same as in Figure 13, but only for the valley sites. 
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Figure 16.   Same as in Figure 13, but only for the mountain sites. 
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Figure 17.   Ranked Probability Skill Score for all regions (top left), coastal region (top right), 
valley region (bottom left), and mountain region (bottom right). 

3. Bimodal Nature of NWP Cloud Water Prediction Error 

 In this section, we will begin to examine the characteristics of the NWP qc 

predictions error to better understand why it, and not visibility parameterization error, is 

dominant. The histograms in Figure 18 show the distribution of each members’ qc 

predictions (dark blue bars, top x-axis labels) for forecast hours 7-20 combined, overlaid 

with the distribution of observed βe (light green bars, bottom x-axis labels).  The bins for 

qc and βe are aligned based on their relationship via the SW99 visibility parameterization.  

For reference, the corresponding daytime visibility thresholds used in the BSS and RPSS 

calculations (6.5, 4.5, 2.75, and 0.875 mi) are indicated on the plot with vertical pink 

dotted lines.  The first (leftmost) bin for qc forecasts represents qc values equal to zero, 

while the second bin represents non-zero values less than 8.5 x 10-4 g m-3.   These two 

bins are combined into a single bin for the observed βe distribution because there are no 
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zero values of βe.  The first six hours of each case are excluded from the histograms to 

minimize the impact of NWP model spin up in the results. 

 The qc predictions from each member show a bimodal signal, with values tending 

to indicate unrestricted visibility (bins 1 and 2, with qc values <8.5 x 10-4 g m-3) or heavy 

fog (bins 9 and 10, with qc values > 8.3 x 10-3 g m-3), with very few forecasts in the light 

fog range (bins 3 through 8).  To a lesser extent, the observed βe distribution is also 

grouped toward the outermost bins, but has a higher frequency of occurrence in the light 

fog range than do the predictions.  For most of the members, the deficit in light fog 

predictions is coupled with a surplus in zero-qc forecasts.  The exceptions are members 

16 and 17, whose forecasts of unrestricted visibility are split more evenly between zero qc 

forecasts (bin 1) and very small, non-zero qc forecasts (bin 2). 

 The behavior of these two members, which are the only members using the 

Ferrier microphysics scheme, is examined more closely by subdividing the qc forecasts in 

bin 2 from Figure 18 into 12 sub-bins (Figure 19).  This histogram shows that nearly all 

these qc predictions are only slightly greater than zero, and are not near the threshold for 

light fog. Of the 772 qc predictions from member 16 plotted in Figure 19, 767 of them 

have a qc value <1.68 x 10-9 g m-3.  Using the parametric visibility parameterization, the 

probability of these producing a βe in the light fog range is <2 x 10-9.  The results for 

member 17 are similar.  Later, we will examine whether these small, non-zero qc 

forecasts are a skillful indicator of fog if given a bias correction.  For now, we may 

conclude that uncertainty in the visibility parameterization is insufficient to deduce a 

chance of light fog from these small, non-zero qc predictions. 
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Figure 18.   Histogram of distribution of NWP qc predictions (blue bars), and βe observations 
(green bars).  Vertical pink dotted lines indicate approximate daytime visibility 

thresholds of 6.5, 4.5, 2.75, and 0.875 mi.  The two leftmost qc bins are combined 
into a single βe bin.  The first six hours of each case are excluded.  
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Figure 19.   Distribution of qc predictions from members 16 and 17, showing only the 
predictions from bin 2 in Figure 18. 

 Uncertainty in the visibility parameterization is also insufficient to deduce a 

chance of light fog from the vast majority of the heavy fog predictions, where most of the 

predictions reside in bin 10 in Figure 18.  A qc prediction of 0.022 g m-3 (the boundary 

between bins 9 and 10) has only a 0.0009 probability of translating to a βe value in bin 8 

or below, thus becoming a light fog prediction.  Furthermore, most of the qc predictions 

in bin 10 have values well above 0.022 g m-3; the median qc value for forecasts in bin 10 

from member 1 is a full order of magnitude greater at 0.22 g m-3, corresponding to a e  

of about 0.05 mi.  The other members have similar median values.  

 To further illustrate this point, Figure 20 shows a scatter plot of observed βe vs 

NWP-predicted βe.  All non-zero qc predictions from all members and all sites are shown, 

with the first six hours of each case excluded.  Each NWP prediction is plotted as a blue 

segment, which represents the range e ± 3σ using the parametric visibility 

parameterization.  The shaded pink interval indicates the range of βe values 

corresponding to light fog conditions, or bins 3-8 in Figure 18.  Observations of βe that 

were reassigned a value of 0.10 km-1 during pre-processing (according to Figure 7) have 

been added to a small random number between -0.05 and 0.05 to prevent these cases 

from being plotted directly on top of each other, which conceals their incidence. 
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Figure 20.   Scatter plot of observed versus NWP-predicted βe for all members.  Each 

prediction is plotted as a blue segment, which indicates the range e ± 3σ from the 
parametric visibility parameterization.  The pink box indicates the approximate 

range of βe values corresponding to light fog. 

 Accounting for visibility parameterization uncertainty with the parametric 

visibility parameterization developed in this work has little effect on the BSSs at the βe 

thresholds of interest because of the highly bimodal distribution of the qc predictions 

from the NWP model.  The bimodal nature of the data is evident in Figure 20.  The 

abundance of small, non-zero qc predictions (mainly from members 16 and 17) is shown 

to translate to very small βe range mainly between 10-9 to 10-2 km-1 and below the 

threshold for light fog.  Similarly, the large majority of heavy fog predictions have a 

plotted range entirely above the light fog threshold.  Among all the observations, the 

climatological frequency of light fog is 0.196.  Yet, if we include the zero-qc predictions 

(which have σ = 0 and therefore a zero probability of translating to light fog), the 

incidence of all predictions having a plotted range that involves the light fog interval is 

only 0.013.  If we limit the range to e ± 1σ (not shown), which is essentially just the 

portion of the PDF with enough probability density to appreciably affect the final 

stochastic predictions, the incidence of all predictions involving the light fog interval is 

reduced to 0.006. 
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 With this in mind, the remainder of this chapter will more closely scrutinize the qc 

prediction error and other aspects of NWP model error contributing or related to the qc 

error.  This will allow a better understanding of the error, paving the way to develop 

strategies to mitigate it in Chapter V. 

B. ANALYSIS OF NWP PREDICTION ERROR 

1. Cloud Water 

 The bimodal nature of the NWP qc predictions does not necessarily mean that, as 

an ensemble suite, they are unskillful at predicting the probability of exceedance at the 

thresholds of interest. It is a fundamental advantage of an ensemble, as opposed to a 

single deterministic NWP prediction, that skill is achievable if the relative number of 

members above and below the threshold can change with some degree of correlation to 

the verifying observation, even if every member has a poor prediction individually.  

Reexamining Figures 13–17, we see this to be the case in certain situations.  The RPSS 

results show that for all sites collectively, skill gradually increases with forecast hour, 

outperforming persistence (i.e., RPSS >0) beyond 9 h.  The inability to beat persistence 

early in the runs is consistent with the performance characteristics of many fog prediction 

frameworks, including NCV (Herzegh et al. 2006), and is not surprising for a model-only 

framework that must undergo spin up of its uninitialized qc field.  Note that the skill of 

persistence has a diurnal trend (not shown) that starts as a perfect forecast (0 h), decreases 

overnight (2~15 h) as the incidence of fog increases, then improves after sunrise near the 

end of the runs (16~20 h) as the incidence of fog decreases.  The improving skill of the 

NWP predictions during the overnight hours is therefore assisted by the accompanying 

drop in skill of persistence, with mixed results after sunrise that are examined more 

closely in subsequent sections.  The following two sub-sections will individually examine 

the resolution and reliability of the NWP qc forecasts. 

a. Resolution  

  Bearing in mind that RPSS and BSS are affected by the accuracy of the 

NWP predictions and the accuracy of the persistence forecasts, it is useful to isolate just 

the performance of the NWP predictions to better understand how the NWP model 
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performs.  In particular, the resolution term of the BSS indicates the degree to which the 

ensemble distinguishes cases when the threshold is met (an event) from cases when it is 

not (a non-event), without regard to the accuracy of the predicted probability of 

occurrence.  For example, if an ensemble made up of 10 highly bimodal members 

consistently has four members above the verifying threshold during non-events, and five 

members above the threshold during events, it would have a high resolution despite the 

fact that the predicted probabilities (0.4 and 0.5, respectively) are not particularly 

accurate.  The ability to obtain resolution depends on the observed climatological 

frequency of occurrence, with resolution most easily obtainable when the event occurs 

half the time, and becoming progressively more difficult to obtain as the climatological 

frequency approaches 0 or 1.  This ease with which resolution may be obtained is termed 

the forecast uncertainty, which quantitatively is the maximum possible resolution.  So it 

is the difference between the uncertainty and the resolution that provides the best overall 

indication of the ensemble’s ability to distinguish events from non-events (with smaller 

differences indicating more ability). 

Examining the cases for all sites (Figure 13), the first few forecast hours 

are marked by a rapid increase in uncertainty caused bythe increasing incidence of 

observed fog with the loss of daytime heating.  (Forecast hour 0 corresponds to 1600 LT, 

with each run ending at 1200 LT the following day).  This increase is not met with a 

corresponding increase in resolution until about 6 h, after which point the resolution 

slowly increases throughout the overnight hours.  After 15 h, the resolution decreases, but 

this coincides with a rapid decrease in the uncertainty (associated with a decrease in fog 

incidence due to daytime heating) such that the difference between uncertainty and 

resolution actually continues to decrease.  Specifically, the ensemble does the poorest job 

of distinguishing events from non-events near midnight, then shows a consistently 

increasing ability to do so throughout the early morning, dawn, and late morning hours. 

This upward trend is an encouraging sign for using the ensemble as the 

underpinning of a fog prediction framework for the traditionally challenging period 

during and after sunrise, but the difference between uncertainty and resolution remains 

quite large at all hours with room for potential improvement using a post-processing 
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technique.  At a minimum, it should be a fundamental goal with the addition of any post-

processing technique to not inadvertently destroy forecast resolution that already exists. 

b. Reliability  

  For a strictly statistical calibration that entails a bias correction to the final 

predicted probabilities from the ensemble, the resolution will not change, and so the 

amount of resolution initially present is of prime importance for the success of the final 

calibrated product. Ensemble reliability, which indicates the conditional bias of the 

probability predictions (i.e., conditioned on the predicted probability bin), is of less 

consequence in this case aside from simply informing the bias correction to be applied. 

For our purpose of pursuing an adaptable, worldwide-transferable VIF 

prediction framework rather than a location-specific calibration, the reliability is of prime 

importance since we cannot simply maximize it with a statistical correction.  Instead, our 

approach to addressing conditional biases must be to first understand why they exist and 

whether they are likely due to a systematic deficiency in the NWP model.  Examining the 

reliability for all sites shows near-perfect reliability at initialization, which is attributed to 

the 0.0471 observed frequency of fog at this late afternoon hour closely matching the 

predicted probability from the ensemble, which is 0 in every case due to the lack of qc 

initialization.  As the incidence of fog increases during the afternoon and evening hours 

(evident by the increasing uncertainty), reliability worsens.  For the verification at the 

lowest βe threshold (top row in Figure 13), the worsening reliability continues until 11 h, 

which corresponds to the period of highest fog incidence (0.3802).  After this period, the 

reliability improves while the incidence of fog decreases.  The reliability changes and 

changes in fog incidence appear to be highly correlated in the verification at all βe 

thresholds. 

The reliability results suggest the ensemble probabilistic forecasts have a 

negative qc bias throughout the runs.  To conceptually illustrate this point, consider the 

extreme example of an ensemble that always predicts 0 probability of an event occurring.  

The ensemble will be quite reliable when the true incidence of occurrence is low, but 

becomes less reliable as the incidence of occurrence increases.  Without precise 
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observations of qc against which we can verify, it is difficult to exactly quantify such a 

bias, but we can deduce from the distributions in Figure 18 that a negative bias exists in 

every member for all post-spin up forecast hours collectively.  To confirm this bias at 

individual forecast hours, the next sub-section presents a deterministic verification on 

each member at the lowest of the four βe thresholds used in the stochastic verification (βe 

= 0.29 km-1, or a daytime visibility of 6.5 mi).   

c. Deterministic Member Verification  

  As before, the qc predictions from each member were converted to βe 

using the SW99 visibility parameterization.  The metrics used in the deterministic 

verification are summarized in Table 5 (some of these metrics are presented elsewhere, 

but their descriptions are included in the table for convenience).  Results for all sites are 

shown in Figure 21. 

At this relatively low threshold, the small qc bias ratios are present in all 

members at nearly all hours.  The negative qc bias also manifests in the probabilities of 

detection, which generally remain below 0.2 for most members. The bias ratios are 

predictably small early in the runs, then show very slight improvement with forecast 

hour. We know that the observed incidence of fog is increasing between 0–11 h, so the 

steady or slightly improving biases during this interval indicates the members are actively 

producing fog in the runs.  Pre-sunrise forecast hours 10–15 are characterized by a high 

incidence of observed fog (between 0.33 and 0.39 – not shown), yet the bias ratios 

continue to improve while the false alarm ratios and probabilities of detection also 

improve.  This matches well with the period of increasing ensemble resolution (Figure 

13), and reinforces the fact that the ensemble is able to distinguish fog events from non-

events to some extent despite the significant negative qc bias of all its members at this 

threshold.  The final few hours of the runs are characterized by more erratic results 

associated with daytime heating and a lower incidence of observed fog, although nine of 

the 10 members still have a bias ratio <1.  Eight of the members maintain a bias ratio 

<0.5 at all forecast hours.  The persistent negative qc bias is also evident in the 

probabilities of detection, which generally remain below 0.2 for most members. 
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Table 5.   Description of metrics used to assess deterministic predictions from each 
ensemble member.  A “yes” forecast or observation means it is above the 

verification threshold.  False positive rate is included in the table but is not 
used until later figures. 

Metric Formula Description 
Best 

Score 
Worst Score 

Bias Ratio 
 

(total "yes" forecasts)

(total "yes" observations)
  

Reveals 
whether 

predictions, 
on average, 

are too 
ambitious or 

too 
conservative 
in forecasting 

event. 

1 

Overforecast: 

+∞ 
Underforecas

t: 0 

False Alarm Ratio 
 

(incorrect "yes" forecasts)

(total "yes" observations)
 

Answers 
question 

“when event 
is forecast, at 
what rate does 

is occur?” 

0 1 

Probability of 
Detection 

(each member) 

(correct "yes" forecasts)

(total "yes" observations)
 

Answers 
question 

“when event 
occurs, at 

what rate was 
it forecast?” 

1 0 

False Positive Rate 
(also called False 

Alarm Rate) 

(incorrect "yes" forecasts)

(total "no" observations)  

Answers 
question 

“when event 
does not 

occur, at what 
rate was it 
incorrectly 
forecast to 

occur?” 

0 1 
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Figure 21.   Results from deterministic verification of each ensemble member in all regions 
using a verification threshold of βe = 0.29 g m-3: (top) bias ratio, (bottom left) 

false alarm ratio, (bottom right) probability of detection. 

d. Regional Results  

  Until now, we have only examined the observations and predictions of all 

sites collectively, but the data from individual regions is useful because different regions 

have different physical processes controlling visibility (e.g., radiation fog in the valley 

region, radiation and advection fog in the coastal region, etc.).  A better understanding of 

the regional results also helps formulate potential approaches to improve the forecasts in 

later chapters.  Figures 22–24 show the post-spinup distribution of the NWP model qc 

predictions and βe observations for the coastal, valley, and mountain regions, 



 55

respectively.  The bimodal distribution of the qc predictions is evident in each region, 

though it is not as pronounced in the coastal region, which is distinguished by the small 

number of fog predictions of any severity by any member.  Despite an obvious negative 

qc bias in the coastal region, the weaker bimodality in the prediction distribution 

compared to the other regions accurately reflects the unique observations distribution, 

which is not bimodal. 

The distributions in the valley region are similar to the overall data, with 

the bimodal predictions displaying a surplus of no-fog forecasts (bins 1 and 2), and 

mostly lacking predictions in the light fog range.  Unlike the other regions, light fog is 

common in this region, occurring in 32% of all observations.  The frequency of 

predictions of the heaviest fog events in bin 10 generally matches the observed frequency 

of these events. 

The mountain region is characterized by only 27 observed fog events, and 

a frequency of no-fog predictions that generally agrees with the observed frequency of no 

fog.  The predictions are also bimodal, with virtually all predictions for fog in the 

rightmost bin. 
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Figure 22.   Same as in Figure 18, but only for the coastal sites. 

 

 
Figure 23.   Same as in Figure 18, but only for the valley sites. 
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Figure 24.   Same as in Figure 18, but only for the valley sites. 

As with the full dataset, a deterministic verification of each member at the 

lowest of the four βe thresholds was performed for each region, and these results are 

displayed in Figure 25.  Predictions in the coastal region show small bias ratios by all 

members at all hours at this threshold, a trait also reflected in the reliability at this 

threshold (Figure 14), which appears well-correlated to the uncertainty during the first 15 

h of the runs.  The bias ratios are the lowest of any region, but the ensemble still displays 

consistent resolution and positive skill after the spin up period.  While the reliability and 

resolution remain fairly steady during daytime heating, the uncertainty decreases from 

16-20 h, causing the BSS to increase to 0.6 by 20 h.  During these hours, there are no 

false alarms (the false alarm ratio is quite erratic at earlier hours due to the small number 

of predicted events) by any member, and only members 5 and 15 have any fog 

predictions at all as evidenced by their non-zero probabilities of detection (POD).  This 

illustrates how the influence of just a few members can impact resolution and ensemble 

skill if they can occasionally distinguish an event, regardless of overall ensemble bias. 
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In the valley region from 0–17 h, all members have slowly increasing bias 

ratios that generally do not exceed 0.5.  The low bias ratios combined with the high 

incidence of observed fog results in the poorest ensemble reliability of all the regions.  

Ensemble resolution is slightly higher than in the other regions during the overnight 

hours, but is relatively small in relation to the uncertainty.  As in the other regions, the 

BSS at this threshold gradually increases overnight as the resolution increases, but here it 

only briefly exceeds 0 from 13–16 h and the ensemble is otherwise outperformed by 

persistence.  A skill decrease after sunrise matches corresponding decreases in 

probabilities of detection while false alarm ratios increase to >0.8 for most members.  

Unlike in the coastal region, the negative qc bias and modest resolution is not enough to 

provide sustained skill in a region where the observed frequency of fog is much higher. 

The low incidence of observed fog events in the mountain region makes 

the deterministic verification data at any single hour rather volatile.  Bias ratios are higher 

than in the other regions, with single-member averages from 0.3 (member 16) to 2.3 

(member 7) across all post-spin up hours.  The average bias ratio from all members at all 

post-spinup hours is 1.3, indicating a slightly positive qc bias at this threshold.  The 

ensemble is shown to have resolution nearly equal to uncertainty for most hours, 

indicating events are distinguished by the predictions far better than they are in other 

regions.  The BSS at this threshold shows mostly increasing skill from 5–8 h, followed by 

a score between 0.4 and 0.8 for the remainder of the runs. 
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Figure 25.   Results of deterministic verification at βe threshold of 0.29 g m-3 in the coastal 

region (top row), valley region (center row), and mountain region (bottom row).  
Metrics shown are bias ratio (left column), false alarm ratio (center column), and 

probability of detection (right column). 

The first few hours after sunrise are traditionally a period of difficulty for 

radiation fog forecasting.  This period is often characterized by fog dissipation, with the 

rate of dissipation dependent on the depth and heating rate of the fog layer, as well as 

changes in the turbulent vertical moisture flux.  Predictions in the valley region in 

particular exhibit indications of these challenges with a sudden decline in RPSS and BSS 

at most thresholds shortly after sunrise. To more closely examine how well the NWP 

predictions handle radiation fog dissipation during this period in the valley region, 

instances when the members correctly predicted fog at 14 h (1–2 h prior to sunrise) were 

tracked through the dissipation process over the subsequent 6 h (Figure 26).  The lowest 

of the four βe thresholds was used as the fog/no fog delineator.  Of the 53 cases of 

observed fog at 14 h, each member correctly verified between 2 (member 10) and 16 
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(member 15) of them at that hour, so each plot represents only a small fraction of the total 

observed fog cases.  Tracking this specific subset of data in this way eliminates the 

impact of fog that forms after sunrise, which is uncommon but does occur both in the 

observations and predictions, and is arguably not radiation fog.  As the cases are tracked 

forward in time, the number that maintained observed fog at each hour is plotted with a 

black line, and the number that maintained fog in the predictions is represented by the 

shaded area, which is divided into correct fog predictions (i.e., “hits”, indicated with red 

shading), and false alarms (blue shading).  Note that the number of hits cannot exceed the 

number of observed cases, so any predictions of fog above the black line must necessarily 

be false alarms.  Conversely, it is possible to have a false alarm area below the black 

observations line if the member prematurely dissipates some cases yet incorrectly 

prolongs others. 

The plots show that, on occasions when fog is correctly present in the 

NWP model prior to sunrise, the dissipation biases vary by member.  Three of the 

members (1, 7, and 15) tend to dissipate the fog cases too slowly, creating an abundance 

of false alarms by 20 h.  In contrast, two members (16 and 17) are shown to dissipate 

their cases rather quickly after sunrise, with the remaining five members showing little 

bias in dissipation rate for this subset of the data. 

With so few cases, it is impossible to draw definitive conclusions about 

any systematic NWP deficiency regarding the post-sunrise dissipation rate.  These limited 

results do not suggest a clear systematic error exists.  Bias ratios in Figure 25 show mixed 

trends after sunrise in this region depending on the member.  The increasing false alarm 

rates and decreasing probabilities of detection during the post-sunrise hours are mostly 

due to volatility from a small and declining sample size.  The occasional cases of 

observed and/or predicted fog formation during the period generally do not verify well 

but do appreciably affect the metrics due to the small sample size.  The post-sunrise 

declines in RPSS and BSS are further affected by an increasingly accurate persistence 

forecast (which is for no fog in 94% of the cases in this region) as the number of fog 

cases declines.   
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Figure 26.   Observed cases of fog (black line) and predicted cases of fog (total shaded area) 

for each member in the valley region.  The plots only include cases when the 
model correctly predicted fog at 14 h.  The shaded region is divided into hits (red) 

and false alarms (blue). 

The more obvious systematic deficiency remains the negative qc bias in 

this region, typified by the fact that 33 of the 53 observed fog cases at 14 h were not 

predicted by any member.  These results partially agree with those of Bang (2006), whose 

WRF runs tended to underforecast radiation fog, but also dissipate it too rapidly in a 

heavy fog case study at Incheon, South Korea. Here, post-sunrise dissipation rates are  
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inconclusive and are not shown for the coastal or mountain regions due to the limited 

number of fog predictions in the latter (fewer even than the valley region), and the limited 

number of observed cases in the former.  

For much of the verification of NWP cloud water predictions discussed 

thus far, we have focused on the lowest of the four βe thresholds, approximately 

corresponding to the important delineator between unrestricted visibility and light fog.  

But with the bimodal nature of the NWP predictions (92.66% of predictions above the 

lowest βe threshold are also above the highest of the four βe thresholds), it is fitting to also 

examine their relative ability to predict just the heavy fog events corresponding to a 

daytime visibility < 0.875 mi.  The BSSs at this highest βe threshold (Figure 16) are 

generally lower than at other thresholds, but are also subject to volatility given the fewer 

number of heavy fog cases.  To provide context to the skill scores, Figure 27 compares 

the false alarm ratios and PODs at the lowest and highest βe thresholds for each member. 

The data from all post-spin up hours has been combined for the plots. 

The skill apparent in predicting the lowest βe threshold (corresponding to 

daytime visibility < 6.5 mi) is lacking in predictions of the highest βe threshold 

(corresponding to daytime visibility < 0.875 mi).  At the lowest βe threshold, we saw that 

predictions in the coastal region had the largest negative qc bias of any region, but 

maintained sufficient resolution to produce skillful forecasts after 7 h.  The same is not 

true for verification at the highest βe threshold, which shows the predictions are unskillful 

at most hours due to virtually no resolution.  Of the eight members that predicted heavy 

fog at least once, all have a false alarm ratio >0.88.  Of 36 total instances of observed 

heavy fog in this region, only two members verified any of them, accounting for only 4 

total hits. 
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Figure 27.   Comparison of false alarm ratio and probability of detection at the low βe 

threshold (0.29 km-1) and high βe threshold (2.1 km-1) for the coastal (top), valley 
(center), and mountain (bottom) regions.  The data includes forecast hours 7-20. 
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Predictions in the valley region have a BSS <0 at most hours at the higher 

βe threshold partly due to significantly higher false alarm ratios and lower PODs.  Despite 

a decreasing resolution, the BSS shows an abrupt increase at the end of the runs.  The 

improvement results from fewer false alarms as the members simply predict heavy fog at 

a lower rate, thereby improving the reliability.  By 19–20 h, the fewer false alarms is 

enough to improve the reliability such that the NWP predictions beat persistence, which 

has a false alarm ratio of 1 from 16–20 h (not shown). 

The mountain region had only 10 observed heavy fog events, causing the 

BSS at the higher βe threshold to be an especially volatile and incomplete picture of NWP 

model performance.  When all post-spin up hours are combined, false alarm ratios for 

most members are <40% higher than at the lower βe threshold (a smaller increase than in 

the other regions), and the probabilities of detection are comparable or higher.  These 

results are promising, but also not entirely surprising since the observed fog distribution 

is most bimodal in this region (i.e., the bimodal predictions have already shown skill at 

predicting fog, and most fog events are heavy fog events).  More cases of heavy fog are 

needed to draw clearer conclusions about the NWP predictive skill for heavy fog in the 

mountains. 

With the possible exception of the mountain region, the poor scores at the 

highest βe threshold serve to emphasize that the ensemble’s skill in predicting the 

existence of fog is better than its skill in specifically predicting heavy fog.  In general, the 

BSSs in each region get progressively worse for greater βe thresholds, with the largest 

decrease occurring between the third and fourth thresholds (corresponding to daytime 

visibilities of 2.75 mi and 0.875 mi, respectively).  However, even at the third βe 

threshold (corresponding to a daytime visibility of 2.75 mi), the scores show non-trivial 

positive skill in the coastal and mountain regions, suggesting the predictions are useful 

for more than just delineating between fog and no fog in some situations. 

e. Summary 

  To summarize the key findings drawn from examination of the NWP qc 

predictions, the skill of the ensemble suite in predicting fog increases throughout the run, 
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and is highest in the mountain region and lowest in the valley region, where it generally 

does not demonstrate skill.  The ensemble is more skillful at predicting fog events than it 

is at specifically predicting heavy fog events. 

Variations in IC and physics suites among the members are shown to 

produce variations in the prediction distributions, but every member exhibits highly 

bimodal predictions in all regions.  This results in very few qc predictions in the light fog 

range, despite a significant observed incidence of light fog in the coastal and valley 

regions.  This is suggestive of a deficiency in the underlying NWP model physics rather 

than initial condition error since the observed fog climatology and the NWP model 

climatologies simply do not match.  Possible sources of the deficiency include an 

inaccuracy in the amount of supersaturation needed for the condensation of fog droplets, 

error in the predicted moisture or temperature fields themselves, or a model layer that is 

simply too high above the ground to adequately resolve some fog events.  These 

hypotheses will be examined in subsequent sections, but since the behavior is observed in 

every region by every member regardless of the physics suite used, we may reasonably 

conclude the deficiency is systematic. 

In the coastal and valley regions, the negative qc biases and lack of 

predictions corresponding to light fog are accompanied by a surplus of predictions for 

zero or near-zero qc.  This results in qc bias ratios <0.5 at the light fog threshold for every 

member at nearly all hours.  The implications of this negative qc bias on the overall 

stochastic predictions is illustrated in Figure 28, which shows the distribution of 

ensemble mean qc predictions for all post-spin up cases of observed fog.  Of 795 total 

observed fog events in all regions, nearly 500 of them (62%) have an ensemble mean qc 

prediction of zero, which is only possible if every member predicts zero qc.  If we also 

include cases when the ensemble mean qc is below the threshold to be considered fog (qc 

<8.5 x 10-4 g m-3, or a predicted daytime visibility >6.5 mi), which often happens when 

one or two members have a very small but non-zero qc prediction while the remaining 

members predict zero qc, we have accounted for 96% of all observed fog cases.  This 

systematic deficiency of producing bimodal predictions and therefore too many zero qc 

predictions in the coastal and valley regions is believed to significantly reduce ensemble 
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skill, and addressing it represents the most impactful avenue of research to improve 

WRF-based VIF prediction without location-specific calibration.  

 
Figure 28.   Distribution of ensemble mean qc for all cases of observed fog in all regions.  The 

first six hours of each case are excluded. 

As shown in Figure 20, the bimodal tendency of the members’ qc forecasts 

also means many qc predictions are too high, significantly overforecasting the severity of 

fog.  Investigating these might also reveal a strategy to mitigate this deficiency, but this 

research will not pursue this avenue for two reasons.  First, instances of a member 

overforecasting qc values happen with less frequency than when qc is underforecast, as 

evidenced by the prediction distribution histograms in Figure 18.  Therefore, addressing 

the deficiency that causes the underforecasting of qc (specifically, predictions of zero qc 

<88.5 x 10-4 g m-3) is believed to have more potential to positively impact predictive skill 

simply because it is more common. 

Second, the individual member forecasts are not as important to overall 

skill as is the stochastic prediction from the entire ensemble suite, and rarely do the 

majority of the members predict heavy fog at the same time.  Among all instances when 

heavy fog is predicted by at least one member, it is predicted by two or fewer members in 

52% of the cases, and five or fewer members in 86% of the cases.  This results in 

significant ensemble dispersion, which tempers the overall impact of erroneously high qc 
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predictions from individual members.  In contrast, in the 62% of observed fog cases 

where all members predict zero qc, there is no ensemble dispersion.  It is believed that 

adding dispersion to these cases provides the best chance to increase the resolution and 

reliability of the ensemble, while altering the high qc prediction cases (and effectively 

reducing ensemble dispersion) runs a greater risk of negatively impacting the ensemble 

resolution that already exists. 

Naturally, the challenge in adding resolution to the ensemble by 

statistically adjusting low qc predictions from the members is knowing whether fog is 

likely in the absence of predicted non-negligible qc.  In principle, this strategy has several 

advantages.  First and foremost, it attempts to address prediction errors that show clear 

evidence of being the result of a systematic NWP deficiency, and so it seems an 

appropriate place for the judicious introduction of a statistical element.  Second, it only 

engages a specific and well-defined aspect of the predictions, allowing individual 

members producing cloud water on their own to do so unabated and still affect the 

predictive PDF.  In this way, the approach is intentionally restrained, and ensures the 

framework remains largely physical-based when the NWP model predicts fog.  Third, it 

offers the potential for improvement not just in reliability, but also in resolution since 

each individual member and case will be affected differently, unlike in an ensemble bias 

correction.  Finally, it is only possible to make the adjustment in one direction (increasing 

qc), which reduces complexity and simplifies tuning of the technique if it is found to 

destroy existing resolution. 

Although the NWP qc predictions are highly bimodal in all regions, the 

nature of the prediction error in the mountain region is unique in that it does not exhibit a 

surplus of zero or near-zero qc predictions.  It is proposed this is mostly due to a unique 

and highly bimodal observation distribution as opposed to any unique behavior of the 

NWP model.  Regardless, since the overall qc bias is near-neutral or positive for most 

members and the predictions are shown to produce the highest RPSS of any region 

beyond 10 h, attaining additional skill in this region is not a driving force behind the 

development and refinement of the techniques described in this work.  Instead, the 

techniques are developed with the goal of increasing skill in the coastal and valley 
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regions while minimizing collateral impacts in the mountain region.  To specifically seek 

skill improvements in the mountain region, it is suggested a more comprehensive 

approach is needed that involves more than just the cases of low qc predictions.  

The remainder of this chapter will examine the low-level thermodynamic 

properties of the NWP predictions to further uncover the source of systematic deficiency 

causing the excessive zero or near-zero qc predictions.  Techniques to address the 

deficiency are examined in Chapter V. 

2. Layer 1 Relative Humidity 

 Given the critical role of RH in fog dynamics, we next examine the RH 

predictions from the NWP model to determine the role it plays in the systematic lack of 

qc predictions.  NWP output at layer 1 refers to the lowest NWP model layer on which 

full integrations are performed in the NWP model, and is where the qc predictions 

examined thus far are produced.  The layer is 19-21 m above the model ground level.  

Later, we will examine predictions from the 2-m level that are produced by WRF post-

processing.  

 The predicted and observed RH distributions are presented in Figures 29-35.  The 

data are presented for each site rather than each region to show the amount of variation 

among the sites within each region.  Except for a few aspects of the data discussed below, 

the results show very little intra-region variability relevant to the conclusions of this 

thesis.  This supports the notion that the NWP deficiencies identified in the layer 1 RH 

predictions are systematic since they are evident at multiple sites within a region.  The 

remainder of the thermodynamic variables examined later in this work also show minimal 

intra-region variability pertinent to the conclusions made.  For brevity, their results will 

be shown for each region rather than each site. 
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Figure 29.   Distribution of NWP layer 1 relative humidity predictions (blue bars), and KCEC 

observations (green bars).  The first six hours of each case are excluded.  

 

 
Figure 30.   Same as Figure 29, but for KACV. 
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Figure 31.   Same as Figure 29, but for KSCK. 

 

 
Figure 32.   Same as Figure 29, but for KMOD. 
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Figure 33.   Same as Figure 29, but for KMCE. 
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Figure 34.   Same as Figure 29, but for KBLU. 

 

 
Figure 35.   Same as Figure 29, but for KRNO. 
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 The coastal sites (KCEC and KACV) are shown to have a negative RH bias by 

every member, with a surplus of predictions with RH <0.7 and insufficient predictions 

with RH >0.85.  The observations exhibit a local maximum in the distribution for RH 

values of 0.88–0.97 that does not exist in the prediction distributions.  The character of 

the distributions is similar in the valley region, although the extent to which the predicted 

distributions underestimate the local maximum in observed high RH values (which in the 

valley region is between 0.82 and 0.97) is less and varies substantially by member.  The 

observed RH is shown to reach saturation quite often at KSCK, but for reasons not clear, 

there are few instances of observed RH reaching saturation at KMCE, and no instances of 

this at KMOD.  Minor ASOS temperature and/or dewpoint instrument error is suggested, 

as the stations have similar observed frequencies of fog (0.57, 0.49, and 0.54 at KSCK, 

KMOD, and KMCE, respectively) and heavy fog (0.23, 0.21, and 0.19) during the study, 

which would not be expected if only some of the sites were reaching an RH of 1 while 

others were not. Additionally, RH values of 0.97–0.99 were never observed at any site, 

which is believed to be due to a rounding routine employed by ASOS. 

 More significantly, the members are shown to have substantial differences in their 

incidence of saturated or supersaturated (RH >1) predictions.  Several members (e.g., 

members 8 and 15) produced predictions at or above complete saturation fairly regularly, 

while others (members 5 and 10) never produced saturation at any site.  Additionally, 

some members (e.g., member 15) show a high incidence of near-saturation predictions 

(RH >0.97 but <1) compared to others. 

 Some variation in RH predictions among the members is expected and indeed 

desired, as the ensemble is intended to sample the uncertainty of the prediction.  

However, these profound differences near the limit of saturation, coupled with the fact 

that saturation was never predicted by any member in the coastal region, raise questions 

about the reconciliation of saturation and cloud water by each member’s respective 

microphysics scheme. 

 To more closely examine the relationship between RH and qc within each 

member, Figure 36 shows each member’s entire RH distribution for all sites, with 

instances corresponding to predicted qc >8.5 x 10-4 g m-3 (the lowest threshold for fog) 
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indicated in light blue.  For comparison the observed data are also shown, with observed 

fog events plotted in light blue.  Clearly, each member is able to predict non-trivial levels 

of qc when RH is below saturation, making the fact that some of the members never 

actually reach saturation largely irrelevant from a fog prediction perspective.  One of 

these is member 10, which predicted fog with RH as low as 0.80.  However, the plots 

show the members are not likely to predict fog until the RH is at least 0.93, and much 

higher than this in some members.  This does not agree with the observed data, which 

shows fog being more likely than not at an RH of only 0.88, and being observed with RH 

as low as 0.81 (lower than the lowest predicted RH coinciding with predicted fog in nine 

of the members).  As discussed in Chapter III, fog is included in observations rather 

liberally by the ASOS algorithm, likely involving some instances of moist haze whose 

particles have not yet reached activation radii.  At issue is the point at which these moist 

haze particles are considered cloud water by individual microphysics schemes, and the 

data in Figure 36 suggests each scheme uses a more restrictive criterion than does ASOS.  

The criterion in the microphysics schemes may be more physically sound, but in practical 

terms, it likely results in the members missing some visibility restrictions due to moist 

haze, which the schemes do not consider.  Absent a modification in the ASOS fog 

identification algorithm, it is likely the microphysics schemes used in this research will 

miss many instances of observed fog when RH is 0.81–0.93 if their RH predictions are 

accurate in these cases.  The extent of the impact will be tested in Chapter V by using 

predicted RH values as a proxy for fog. 
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Figure 36.   Distribution of layer 1 relative humidity predictions from each member at all 
sites.  Predictions coinciding with qc <8.5 x 10-4 g m-3 (the lowest threshold for 

fog) are plotted in light blue.  The observed relative humidity distribution is also 
included, with instances coinciding with observed fog plotted in light blue.  The 

first six hours of each case are excluded. 
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 Aside from the inconsistencies at near-saturation, the larger discrepancies 

between the distributions of RH predictions and observations suggest more fundamental 

NWP prediction errors.  The negative bias of nearly all members in the coastal and valley 

regions (as well as the near-neutral bias in the mountain region) is reflected in the 

verification rank histograms of layer 1 RH (Figure 37) for all post-spin up data, which 

show that the observed RH is higher than the predictions of all members at a rate that 

exceeds 0.6 in the coastal region, and exceeds 0.35 in the valley region. These rates are 

inflated to some extent due to the reluctance of some members to reach saturation 

(something the observations do with some regularity), but they still provide strong 

indication that the deficiencies of each member’s RH forecasts also significantly hinder 

the quality of the ensemble stochastic predictions.  Additionally, the frequency of 

observations falling above or below all member predictions is excessive in the valley and 

mountain regions.  This indicates the ensemble is underdispersive, or that the uncertainty 

in the prediction is not adequately sampled by the ensemble members, even after 

correcting for bias.  In the coastal region, the dispersion characteristics are difficult to 

determine due to the strong negative bias overwhelming the signal. 

 

Figure 37.   Verification rank histograms of layer 1 relative humidity for the coastal region 
(left), valley region (center), and mountain region (right).  The first six hours of 

each case are excluded. 

 In the left column of Figure 38, the layer 1 RH bias and error variance for all 

cases are shown for the coastal region (top two panels), valley region (center two panels), 

and mountain region (bottom to panels) for each member as a function of forecast hour.  

These two metrics function as a decomposition of the total mean squared error of the 

predictions into a bias component (or the mean error at each hour for the given member), 

and the mean square of the remaining error after the bias has been subtracted from the 
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member’s predictions.  Decomposing the error into these components shows the potential 

effectiveness of a bias correction to the data (i.e., predictions with low error variance 

offer more promise for an effective correction, especially if the observed bias is relatively 

consistent among the members and forecast hours). 

 Not surprisingly, RH biases in the coastal region are between -0.10 and -0.25 for 

each member throughout most of the run, with all members improving to a small negative 

bias from 17–20 h.  Even after this bias is subtracted from the predictions, the error is 

significant, with error variances for the majority of members ranging from 0.02 to 0.04.  

(Taking the square root of the error variance yields the bias-corrected standard deviation 

of the RH error, σ, which in this case is between 0.14 and 0.20.)  The biases in the valley 

region are smaller in magnitude and more consistent throughout all forecast hours, 

ranging from about -0.15 to 0 for most members. 

 The negative biases that decrease in magnitude after sunrise are consistent with 

the NWP model layer 1 not adequately capturing a low-level inversion, whether due to 

the model layer being too high and/or inadequate cooling at the layer itself (consistent 

with the findings of Tardif 2007, whose model layer 1 was only half as high at 10 m 

above the model ground level).  This scenario might be expected in some radiation fog 

events, and perhaps during some advection fog.  The bias improves after sunrise as the 

boundary layer is heated and mixed, destroying any low-level inversions.  We will show 

later that this likely contributes to at least part of the negative bias in layer 1 RH. 
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Figure 38.   Layer 1 relative humidity bias and error variance of each member for coastal (top 

two rows), valley (center two rows), and mountain (bottom two rows) regions.  
The left column shows all data, the center column includes only fog hits (fog 

observed and predicted) and the right column includes only fog missed 
opportunities (fog observed and not predicted). 
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 The error variances in the coastal region gradually increase overnight before 

dropping during the post-sunrise hours.  This trend closely matches the observed 

incidence of fog (i.e., the error variance is higher when the incidence of fog is highest), 

raising doubts about whether the layer 1 RH predictions alone offer adequate predictive 

skill to inform adjustments of low qc predictions in this region.  The inconsistent biases 

could necessitate the additional complexities of a qc adjustment strategy that is time-

dependent, something that is preferably avoided due to the risks of using a much smaller 

dataset at any given hour as the basis for mitigating the impacts of an NWP systematic 

deficiency.  Still, the mountain region also shows somewhat inconsistent biases with error 

variances only slightly smaller than in the coastal region, yet the qc predictions are the 

most skillful presumably because the bias is near-neutral.  Although layer 1 RH 

predictions in the coastal region are not ideally suited for our purpose, they certainly 

cannot be excluded as an option to help inform qc adjustments. 

 In the valley region, error variances are shown to be comparatively lower during 

the nighttime before increasing after sunrise.  Since the overnight hours are also 

characterized by a fairly consistent bias, the prospect of leveraging available RH 

predictive skill to inform qc adjustments is higher than in the coastal region, excluding the 

post-sunrise period. 

 Since we are limiting our statistical approach to upward adjustments of zero qc 

predictions, it is useful to compare the biases and error variances of instances when the 

members correctly predicted fog (i.e., the hits, shown in Figure 38 center column) to 

instances when fog was observed but not predicted (“missed opportunities”, shown in 

Figure 38 right column).  The interpretation here is different than for the overall data in 

the sense that we do not have the option of correcting for the missed opportunity biases 

since we do not know a prediction is a missed opportunity until after the fact; indeed, 

identifying low qc predictions likely to be missed opportunities is precisely our primary 

objective.  Instead, viewing the parsed biases and error variances in this way potentially 

provides insight into why the NWP model sometime predicts observed fog events and at 

other times misses them. 
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 For the hit cases, the data shows very small error variances because the predicted 

layer 1 RH must be very close to 1 in order to predict qc.  The biases in each region are 

slightly >0, reinforcing our earlier results that RH in the model must be closer to 1 (or 

slightly >1) to produce qc than what is required in the observations.  However, attempting 

to account for this discrepancy by using a slightly lower RH as a proxy for fog is unlikely 

to have great effect since the biases for the missed opportunities are far from neutral, 

ranging from -0.35 and -0.2 for most members.  Furthermore, the magnitude of these 

biases is larger than for the overall data, especially in the valley region, which means 

even with a bias correction to the RH predictions (informed by the overall RH bias), they 

might have limited usefulness in skillfully reducing fog missed opportunities. 

 Another important inference we may draw from the parsed biases is the degree to 

which error in the layer 1 RH predictions is linked to error in the qc predictions.  For 

example, if the biases are similar for fog hits and missed opportunities, it suggests layer 1 

RH errors are independent of excessive zero qc predictions, and therefore could not be 

traced as a cause of the qc prediction deficiency.  In the coastal and valley regions, this is 

clearly not the case, indicating there is a high correlation between RH errors and qc 

errors.  Given our physical understanding of fog and the critical role of RH in its 

dynamics, we may reasonably conclude that prediction error in layer 1 RH plays a role in 

the systematic NWP deficiency that ultimately manifests as excessive zero qc predictions 

in the coastal and valley regions. 

 Our next step is to continue to trace the error backward through the predictions of 

the fundamental elements of RH to better understand the source of the qc error.  

Specifically, layer 1 temperature and layer 1 water vapor are examined next.  Before 

proceeding to the analysis of water vapor prediction errors, two brief observations are 

made regarding the layer 1 RH data that is not central to this work but noteworthy 

nonetheless.  Unlike the qc field, the RH field is initialized in each member with ICs from 

a member of GEFS.  However, the initialization in this dataset provided layer 1 RH ICs 

that were too low by an average of 0.10 in the coastal region, and 0.05 in the valley 

region (Figure 38, left column).  After a few hours, the effect of this IC bias is likely 

smaller than the effect of the systematic NWP deficiency evidenced by the mismatched 
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model climatology and observed climatology of layer 1 RH, but further examination is 

needed to better grasp the full impacts of IC bias. 

 Secondly, there is some evidence of significant spin up fluctuations in the layer 1 

RH field in all regions when the members are initialized in moist conditions.  This can be 

seen by the oscillations of error variances during the first few hours of the missed 

opportunities cases (Figure 38, right column).  Additionally, the mountain region during 

these hours has a bias of near zero during missed opportunities (the only time in any 

region this is observed), indicating the layer 1 RH values are accurate (i.e., near 

saturation), but there is no cloud water in the predictions.  Whether this is due to spin up 

of the qc field or a case of moist haze being identified as fog by ASOS cannot by known 

without further investigation. 

3. Layer 1 Temperature 

 Systematic NWP error causing RH predictions to be too low could be due to 

temperature predictions that are too warm, moisture predictions that are too low, or a 

combination of both.  Distributions of predicted and observed layer 1 temperature for 

each region are shown in Figures 39–41.  In the coastal region, the NWP model 

climatology from every member is shifted several degrees warmer than the observed 

climatology, resulting in a clear warm bias.  Seven of the members had no predictions 

<276 K, yet the observed climatological incidence of temperatures below this threshold is 

0.2019.  The same deficiency is present in the valley region, although it appears to be less 

severe in most of the members.  The distributions of predictions in the mountain region 

do not show a clear warm bias.  The mountain region is also unique for its bimodal 

distribution of observations, a feature also reflected in the prediction distributions of most 

members. 

 The verification rank histograms for the layer 1 temperature (Figure 42) show that 

the stochastic predictions from the entire ensemble suite also have a clear warm bias in 

both the coastal and valley regions.  The bias in the coastal region is the most severe, 

with over 70% of the observation verifying below every member’s prediction.  A minor 

warm bias is evident in the mountain region.  The ensemble is shown to be 

underdispersive in each region. 
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Figure 39.   Histogram of distribution of NWP layer 1 temperature predictions (blue bars), and 

observations (green bars) for coastal region.  The first six hours of each case are 
excluded.  
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Figure 40.   Same as in Figure 39, but only for the valley sites. 

 

 
Figure 41.   Same as in Figure 39, but only for the mountain sites. 



 84

 

Figure 42.   Verification rank histograms of layer 1 temperature for the coastal region (left), 
valley region (center), and mountain region (right).  The first six hours of each 

case are excluded. 

 Figure 43 confirms that, when all the data is included (left column), the coastal 

region exhibits the largest warm biases, which gradually increase during the night and 

reach nearly 5 K by all members just prior to sunrise.  The pattern is the same with less 

magnitude in the valley region, with the warm biases reaching 2–3 K for most members 

before returning to near-neutral after sunrise.  The nature of the error variances, however, 

is quite different between the two regions.  At the coastal sites, the error variances reach 

nearly 20 K2 pre-sunrise, then decrease to about 5 K2 during the late morning.  In 

contrast, error variances in the valley region are relatively low overnight, then increase by 

5–15 K2 after sunrise.  This pattern closely follows those of the layer 1 RH error 

variances in each respective region, suggesting the temperature prediction errors are at 

least partially responsible for the layer 1 RH errors. 

 To compare these results more closely in the context of diurnal temperature 

changes, Figure 44 shows the mean temperature change of observations (green) and 

predictions (blue) during the interval 7–15 h (2300-0700 LT), and again from 15–20 h 

(0700-1200 LT) for all cases.  Although it is mean temperature changes that are shown, 

the line for the predictions does not start at zero but has been displaced upward above the 

line for the observations so that the mean bias of the predictions is also portrayed 

throughout the plots. The thin dashed lines represent ± 1σ of the temperature changes (not 

the biases) for each of the two intervals.  The plots show that both regions exhibit mean 

observed diurnal temperature changes of several degrees, but the valley region 

predictions have the diurnal changes more accurately forecast.  Of particular note is the 

mean cooling rate of the predictions in the valley region, which is in close agreement 
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with observations.  This is a different result than that achieved by Tardif (2007), who 

found delayed fog onset due specifically to inadequate cooling. 

 In contrast, the coastal region predictions have a total temperature range that 

averages <1 K across the entire post-spin up period (7–20 h), suggesting a general 

deficiency in the handling of boundary layer temperature forcings.  The difference 

between the two regions is especially evident during the interval 15–20 h, when the 

coastal region predictions show mean warming of only 0.8° C. 
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Figure 43.   Layer 1 temperature bias and error variance for each member for coastal (top two 
rows), valley (center two rows), and mountain (bottom two rows) regions.  The 

left column shows all data, the center column includes only fog hits, and the right 
column includes only fog missed opportunities. 
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Figure 44.   Layer 1 mean temperature change for observations (solid green line) and 
predictions (solid blue line) from 7–15 h, and again from 15–20 h in the coastal 

region (left) and valley region (right).  The line for the mean prediction change is 
offset above the line for the mean observations change so that the mean bias of 

the predictions is also portrayed throughout the plot.  The dotted lines represent ± 
1σ of the temperature change within each interval.  

 It is proposed the difference in overnight error variances between the two regions 

is attributable to a more consistent nighttime boundary layer structure in the valley 

region, which is subject to large-scale radiative cooling and weak drainage flow on the 

majority of nights, as opposed to a mix of less-consistence radiative cooling and 

advection complicated by larger low-level temperature gradients inherent to the coastal 

region.  While the valley region structure is seemingly more predictable for the WRF 

members than the coastal boundary layer, the warm bias in both regions suggests the 

NWP model does not fully resolve the coldest air near the surface.  Perhaps the coastal 

region predictions are also sensitive to IC bias, which is shown to average 3–4 K warm in 

all members. After sunrise, the decreasing error variances in the coastal region are due to 

observed warming that is more consistent in timing and amplitude, whereas warming in 

the valley region has more day-to-day variation not resolved by the predictions. 

 The biggest reason for greater variation in warming rates in the valley region may 

be the greater tendency for fog to linger well into the late morning, with most cases 

absent in the predictions; at 20 h, the incidence of observed fog is 0.2338 in the valley 

region, and only 0.0893 in the coastal region.  These post-sunrise trends are consistent 
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with the fog BSSs in each region, which generally increase after sunrise in the coastal 

region, and decrease in the valley region. 

 Examining the layer 1 temperature biases and error variances for fog hits (Figure 

43, center column) and fog missed opportunities (Figure 43, right column) shows that the 

members in both the coastal and valley regions have virtually no temperature bias when 

fog is correctly predicted.  However, predictions resulting in fog missed opportunities are 

characterized by a warm bias of at least 3 K at most hours in both regions.  This disparity 

is additional evidence that the observed temperature deficiencies are linked to qc 

prediction deficiencies (via RH prediction deficiencies).   

 For most members, the layer 1 temperature biases in the coastal region are larger 

by <1 K larger during missed opportunities compared to the biases for all the data.  This 

aspect of the predictions makes layer 1 temperature a good candidate for a bias correction 

in this region.  However, the large overnight error variances are a drawback, as are the 

abrupt change in biases after sunrise.  Even with a successful bias correction, the full 

impact on improving the skillfulness of the RH and qc predictions is also dependent on 

the nature of the water vapor predictions, which are examined in the next section. 

 The layer 1 temperature predictions are perhaps slightly less suitable for a bias 

correction in the valley region given the larger overnight biases by 0.5–1.5 K during 

missed opportunities compared to the biases for all the data (the differences become 

larger after sunrise).  However, the reasonably consistent nature of the biases as a 

function of forecast hour, and the low error variances relative to the coastal region are 

positive characteristics of the predictions that might be leveraged to inform qc 

adjustments using methodology other than a bias correction.  Whether this is the case is 

explored in subsequent chapters. 

4. Layer 1 Water Vapor 

 The systematic warm bias in the NWP predictions has been shown to play a role 

in the negative RH bias, but moisture predictions may also contribute to the low RH 

predictions.  Distributions of layer 1 water vapor mixing ratio, qv, predictions are in 

generally close agreement with the observed distribution in each region (Figures 45–47), 

with only minor discrepancies apparent in individual members.  Unlike the layer 1 RH 
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and temperature predictions, no systematic NWP model deficiency affecting the model 

climatology of qv predictions is immediately apparent. 

 

 

 

 

 
Figure 45.   Histogram of distribution of NWP layer 1 qv predictions (blue bars), and 

observations (green bars) for coastal region.  The first six hours of each case are 
excluded.  
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Figure 46.   Same as in Figure 45, but only for the valley sites. 

 

 
Figure 47.   Same as in Figure 45, but only for the mountain sites. 
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 The verification rank histograms of layer 1 qv (Figure 48) show that the ensemble 

suite perhaps has a slight moist bias in each region, further suggesting that qv bias is not a 

primary cause of the NWP model RH bias.  Furthermore, the magnitude of the bias 

implied by Figure 48 is less than that implied by the rank histograms of layer 1 RH and 

temperature predictions, indicating there is comparatively little bias in the qv predictions.  

The stochastic predictions in each region are clearly underdispersive, particularly in the 

valley and mountain regions.  

 
Figure 48.   Verification rank histograms of layer 1 qv for the coastal region (left), valley 

region (center), and mountain region (right).  The first six hours of each case are 
excluded. 

 In Figure 49, the member biases for all cases (left column) are shown to be near-

zero throughout the overnight hours in each region.  Aside from a spin up period in the 

valley region, error variances are 0.5–1.0 g2 kg-2 (translating to σ of 0.7–1.0 g kg-1) for all 

members in all regions through most forecast hours.  To compare the relative impact on 

RH of this error variance versus layer 1 temperature error variance, consider that at 1000 

hPa with a temperature of 278 K and an RH of 0.9, a decrease in qv of 0.85 g kg-1 (or 

about 1σ in the data) results in an RH of 0.74, which it the same effect as a temperature 

increase of 2.7 K (which when squared translates to an error variance of 7.3° K 2).  The 

relative effect varies substantially at different RH, but as a first-order estimate, we may 

conclude the qv predictions and temperature predictions have comparable error variances 

in the valley region in regard to their effect on RH during the overnight hours, with the 

temperature predictions having larger error variances (and likely less predictive skill) 

after sunrise.  In the coastal region, the temperature predictions have greater error 

variances during the nighttime, and similar error variances as the qv predictions after 

sunrise. 
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 Since the biases are near-neutral during the nighttime, the qv predictions offer less 

immediate opportunity to leverage for an bias adjustment technique during this period.  

The change in bias after sunrise in the coastal and valley regions is also not well-suited 

for a correction due to its time dependence, but it is still worth examining to better 

understand the behavior of the NWP model.  In Figure 50, the qv changes for these two 

regions are plotted in the same format as Figure 44.  On average, both regions show an 

observed qv decrease overnight (7–15 h), followed by an increase after sunrise (15–20 h).  

Despite the deficiencies observed in the coastal region in capturing diurnal temperature 

trends, the NWP model appears to model the diurnal qv trends relatively accurately in this 

region. The plots suggest the small positive bias overnight evolves into a negative bias by 

the end of the runs due generally to insufficient moistening of the boundary layer after 

sunrise.  This characteristic is more pronounced in the valley region, where the average 

rate of observed moistening is higher but the average rate of predicted moistening is 

lower than in the coastal region. 
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Figure 49.   Layer 1 qv bias and error variance of each member for coastal (top two rows), 
valley (center two rows), and mountain (bottom two rows) regions.  The left 

column shows all data, the center column includes only fog hits, and the right 
column includes only fog missed opportunities. 
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Figure 50.   Layer 1 mean qv change for observations (solid green line) and predictions (solid 

blue line) from 7–15 h and from 15–20 h in the coastal region (left) and valley 
region (right).  The line for the mean predictions change is offset above the line 
for the mean observations change so that the mean bias of the predictions is also 
portrayed throughout the plot.  The dotted lines represent ± 1σ of the qv change 

within each interval.  

 Dai et al. (1999) and Dai et al. (2002) proposed several influences on diurnal qv 

trends, including evapotranspiration, synoptic scale vertical motion, precipitation, and 

convective vertical mixing.  Any of these might have varying influence on any given day, 

with evapotranspiration perhaps playing the largest overall role due to its tendency to 

increase with insolation and peak around noon (therefore being consistent with post-

sunrise moistening), and the abundance of water sources in both regions (moist soil, 

vegetation canopy, bodies of water, etc.). If this is the case, the evapotranspiration 

dynamics (or the representation of water sources) in the NWP model may have important 

errors in both the coastal and valley regions, but the larger warm biases in the coastal 

region predictions may counteract this shortcoming (since evapotranspiration rate 

increases with temperature).  Whether this or other factors are important will not be 

exhausted here.  Recall that layer 1 RH biases in both regions have an upward trend after 

sunrise, indicating that the decreasing temperature biases, not the downward-trending qv 

biases, are the dominant influence during this period.  Still, further analysis is warranted, 

especially since the negative post-sunrise qv bias is larger during fog missed opportunities 

(Figure 49, right column). 
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 During the post-spin up overnight hours (7–15 h), qv biases during missed 

opportunities are near-neutral in all regions, suggesting the warm temperature biases are 

the primary systematic deficiency leading to the negative RH bias and excessive zero qc 

predictions. 

 During fog hits, qv biases are slightly positive.  This accounts for the positive RH 

bias exhibited during fog hits (Figure 38 center column) since temperature biases were 

shown to be near-neutral bias during fog hits (Figure 43 center column),  

 While the coast and mountain regions exhibit near-neutral biases of their qv fields 

at 0 h, the initialization biases in the valley region average about -0.2 g kg-1 for all the 

data, and are 3–4 times higher when fog is observed at the initialization hour (there are no 

fog hits at 0 h, so the missed opportunities data represents all observed fog cases).  When 

combined with an approximately 7 K warm bias at 0 h when fog is observed, the valley 

region appears to undergo an especially ponderous spin up of both the qv and temperature 

fields when fog is present at the initialization hour.  The magnitude of these initialization 

errors during 0 h fog events raises questions about the extent to which they affect the 

predictions throughout the run, even though the biases level off and the error variances 

decrease rapidly during the spin up period.  At a minimum, it indicates the initialization 

process needs further attention if either of these fields are to be used in moist conditions 

without the benefit of a generous spin up period. 

 In summary, the layer 1 qv predictions demonstrate minimal biases, and are not 

primarily responsible for the negative RH biases at any post-spin up hour. This is not to 

say the qv predictions are highly accurate, as they still contain significant error.  However, 

the error variances are comparable to or lower than those of the layer 1 temperature 

predictions in regard to their impact on RH.  As an ensemble, the qv predictions are 

underdispersive.  With the possible exception of the post-sunrise period, which is 

characterized by insufficient moistening of the boundary layer in the valley region with 

relatively minor impact on RH, the NWP model exhibits no obvious systematic 

deficiencies regarding its qv predictions.  We may therefore reasonably conclude the first-

order NWP model systematic deficiency responsible for excessive zero qc predictions is a 

negative RH bias attributable to a warm temperature bias. 
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 It is worth considering whether, in order to best assess the NWP general moisture 

verification, it is better to verify the entire water budget field, qv + qc, rather than each 

field separately as we have done, especially since we know the qc field is significantly 

underforecast by the NWP model.  A simple scale analysis of these components reveals 

that even in heavy fog with qc = 0.05 g m-3 (corresponding to a daytime visibility of about 

0.2 miles), the liquid water mixing ratio is only about 0.042 g kg-1, significantly less than 

both the typical magnitude of the qv biases (0.5 g kg-1) and the bias-corrected σ of the 

error (0.7 g kg-1).  We may conclude qv is a reasonable estimate of the total moisture 

content, and the results of the qv verification alone are sufficient to assess the NWP 

model’s general verification of moisture. 

5. 2-Meter Temperature 

 In the next three sections, we break from our strategy of tracing sources of the qc 

error backward through the predictions, and instead examine the impact of the WRF post-

processing routine used to produce predictions at 2-m and whether it might be leveraged 

to increase qc predictive skill.  Slightly different metrics are used that are more suited to 

this task. 

 WRF post-processing derives the 2-m predictions of temperature and qv from the 

layer 1 predictions by employing a flux-profile relationship (Stull 1988), where fluxes of 

heat, moisture, and momentum are provided by the PBL scheme used in the member.  qc 

is not included among the variables predicted, but temperature and qv at 2 m above model 

ground level are, and these are examined next (along with 2-m RH).  As these sub-layer 1 

predictions are strictly post-processed after the WRF has completed its integrations, there 

is no feedback mechanism for them to affect the layer 1 predictions.  Therefore, they 

cannot be a source of the qc error.  

 Distributions of 2-m temperature predictions in the coastal region (Figure 51) 

show a systematic warm bias similar to that observed in the layer 1 predictions.  As in 

layer 1, the model climatologies of every member in this region are distinctly offset to the 

warm side of the observed climatologies.  Additionally, compared to the layer 1 
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predictions, the 2-m predictions in several of the members (members 1 and 162) appear to 

be less dispersive, with a very high incidence of predictions in the range 282-285 K.  The 

smaller dispersion is confirmed by computing the average variance of each member’s 

predictions, which is 11.7 K2 at layer 1, but only 7.3 K2 at 2 m.  Both of these are less 

than the observed temperature variance of 14.5 K2. 

 The 2-m temperature distributions in the valley region (Figure 52) also appear to 

maintain the systematic warm bias observed at layer 1 in this region, although the bias is 

perhaps not as large at 2 m.  The shape of the prediction distributions appears slightly less 

underdispersive for several of the members compared to the distributions at layer 1, but 

otherwise no obvious differences are evident.  

 Prediction distributions in the mountain region (Figure 53) have the largest 

variety among the members, with most members’ distributions appearing to be centered a 

few degrees colder than the layer 1 predictions. 

 The 2-m temperature verification rank histograms (Figure 54) show that the 

stochastic predictions in the coastal region suffer from a warm bias comparable to that of 

the layer 1 predictions. The stochastic predictions remain underdispersive in the coastal 

region.  In the valley region, the warm in 2-m temeprature is smaller than that of the layer 

1 predictions, and the stochastic predictions are less underdispersive than the layer-1 

stochastic predictions.  Predictions in the mountain region are characterized by a cold 

bias (in contrast to a slight warm bias at layer 1).  Underdispersion is slightly improved 

compared to layer 1. 

 

 

                                                 
2 In a WRF model update notice dated 21 December 2011, primary model developers at the University 

Corporation for Atmospheric Research (UCAR) reported a bug affecting 2-m temperature predictions when 
the RUC land surface model is used in conjunction with the YSU PBL scheme.  Members 15 and 17 are 
configured with these two schemes, and their results indeed deviate from the rest of the member predictions 
in certain aspects of the verification.  Although a new version of WRF was released by UCAR with the bug 
resolved, it was too late in this work to reproduce the NWP model runs, and therefore the 2-m verification 
results presented in this section include output from the affected members even though their results are 
largely excluded from the discussion.  Verification results of 2-m qv and 2-m RH from these two members 
are also erratic at times, and so these are likewise excluded from discussion despite inclusion in the figures.  
During development and testing of the qc adjustment techniques proposed later in this work, the members 
were largely excluded when 2-m predictions were involved, with exceptions to this rule noted in those 
chapters.  
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Figure 51.   Histogram of distribution of NWP 2-m temperature predictions (blue bars), and 

observations (green bars) for coastal region.  The first six hours of each case are 
excluded.  

 
 
 
 
 
 
 
 
 



 99

 

 
Figure 52.   Same as in Figure 51, but only for the valley sites. 

 

 
Figure 53.   Same as in Figure 51, but only for the mountain sites. 
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Figure 54.   Verification rank histograms of 2-m temperature for the coastal region (left), 

valley region (center), and mountain region (right).  The first six hours of each 
case are excluded. 

 The more accurate dispersion of the 2-m predictions in the valley region does not 

necessarily indicate less error in the predictions, but it does signify that for any given 

forecast, the members more thoroughly sample the uncertainty and are thereby less likely 

to be clustered together either above or below the verifying temperature.  Quantifying the 

reasons for the increased dispersion – which likely include differences in each member’s 

land surface scheme, PBL scheme, and land surface properties such as soil moisture—is 

not an emphasis of this work.  But should these 2-m predictions be found useful to inform 

a qc adjustment technique, the greater dispersion is an added benefit that translates to 

better dispersion in the results of the technique.  Notably, the varied model physics and 

land surface parameters did not result in increased dispersion in the coastal region, and 

only slightly increased dispersion in the mountain region.  This suggests the physics 

variations among the members in these regions are not sufficiently aggressive to sample 

the full physics uncertainty, or that significant sources of unsampled uncertainty exist 

elsewhere in the NWP model (e.g., sea surface temperature in the coastal region). 

 Biases and error variances as a function of hour are shown for each region in 

Figure 55.  The two columns in the figure represent results from all data (left column), 

and fog missed opportunities (right column).  Verification during fog hits is excluded 

here because our emphasis is no longer on tracing the source of the qc prediction 

deficiency, but instead to simply assess the potential to use the 2-m data to inform our qc 

adjustment technique.  Since the fog hits would not be affected by this technique and the 

2-m predictions have no effect on layer 1 predictions, the results during fog hits are not 

relevant. 
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 The 2-m temperature predictions in the coastal region have biases similar to the 

biases at layer 1 at all hours, including the decreasing bias after sunrise indicative of 

insufficient warming in the predictions.  At 2 m, the biases for the fog missed 

opportunities average ~1 K warmer than the biases for all the data, which is nearly 

similar to the bias differences at layer 1. However, note that biases at 2-m are more 

consistent among the members (especially during fog missed opportunities), which is 

significant since any potential bias correction would not be member-specific.  

Additionally, error variances are lower for the 2-m predictions, an indication of higher 

predictive skill than the layer 1 predictions. 
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Figure 55.   2-m temperature bias and error variance of each member for coastal (top two 

rows), valley (center two rows), and mountain (bottom two rows) regions.  The 
left column shows all data, and the right column includes only fog missed 

opportunities. 
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 At 2-m, the warm biases in the valley region are reduced to <1 K in most 

members.  In contrast to the coastal region predictions, diurnal changes in the 2-m 

temperature biases are practically eliminated in the valley region predictions at 2 m, 

indicating the post-sunrise heating in the predictions matches the magnitude of the 

observed heating.  The error variances of the 2-m predictions in this region are also 

generally lower than at layer 1 until sunrise, after which they are comparable at both 

levels.  In all, the 2-m temperature predictions appear to be more skillful and (based on 

the verification rank histogram) more accurately dispersed. 

 Additionally, the valley region 2-m predictions do not show the very warm-biased 

initialization and large error variances of up to 25 K2 during spin up that were indicated 

in the layer 1 predictions when fog is present at initialization.  However, overnight warm 

biases of 2–3 K are still present during fog missed opportunities and become worse after 

sunrise, raising questions about the prospects of an effective bias correction. 

 In the mountain region, a near-neutral bias was observed in the layer 1 

temperature predictions.  However, at 2 m, a cold bias exists for nearly all members at all 

hours after being initialized with a 5 K cold bias.  Error variances at 2-m are comparable 

to those at layer 1 for most members.  The inter-member variability of error variances is 

larger for the 2-m predictions, a characteristic only observed in this region, suggesting 

that certain physics suites (such as those used by members 5 and 7) perform significantly 

better in this region than others (those used by members 10 and 16).  In contrast to the 

other regions, the 2-m temperature predictions do not appear to offer better predictive 

skill than the layer 1 predictions, and indeed appear less skillful. 

 Similar biases in the coastal region layer 1 and 2-m temperature predictions 

suggests that, if the systematic warm bias of the NWP model is caused by unresolved 

inversions below layer 1, the WRF post-processing does not adequately reveal them in 

this region.  As the region is characterized by a mix of radiation and advection fog, it is 

unlikely a 3–5 K cold bias in the layer 1 predictions can be explained solely by shallow 

inversions not at least partly revealed during post-processing for the 2-m temperature 

predictions.  More likely, there is a systematic warm bias at layer 1 itself, worse during 

the nighttime, that causes a systematic warm bias in the 2-m predictions as well. 
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 In contrast, the layer 1 warm bias in the valley region is reduced by the post-

processing of 2-m temperatures.  If we assume the post-processing is at least somewhat 

skillful at detecting temperature trends in the first few meters above the ground (which 

the low error variances suggest is the case), then the bias improvement at the 2-m level 

indicates unresolved inversions below layer 1 are a contributing factor to the systematic 

layer 1 warm bias. 

6. 2-Meter Water Vapor 

 2-m qv predictions are examined next to evaluate their potential to be used to 

inform qc adjustments.  Distributions of each member’s 2-m qv predictions in each region 

are shown in Figures 56–58. In the coastal region, the predictions exhibit a moist bias in 

every member in contrast to the near-neutral biases in the layer 1 qv predictions in this 

region.  The valley region distributions show no noticeable systematic bias, and in fact 

each member’s distribution has only minor differences from its distribution of layer 1 qv 

predictions.  Predictions in the mountain region, where each member had a near-neutral 

bias at layer 1, exhibit more variability among the members than the other regions.  Some 

members (e.g., members 7 and 8) maintain a similar distribution at both levels and a near-

neutral bias, while others (members 16 and 19) show model climatologies with a moist 

bias at 2-m that was not present at level 1.  None of the members have a noticeably drier 

distribution at 2-m than at layer 1. 
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Figure 56.   Histogram of distribution of NWP 2-m qv predictions (blue bars), and 

observations (green bars) for coastal region.  The first six hours of each case are 
excluded.  
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Figure 57.   Same as in Figure 56, but only for the valley sites. 

 

 
 

Figure 58.   Same as in Figure 56, but only for the moutnain sites. 
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 Stochastic biases of layer 1 qv were shown to be minimal in each region, but 

Figure 59 indicates the ensemble is distinctly too moist in each region at 2-m.  The moist 

bias is largest in the coastal region, and smallest in the valley region.  The verification 

rank histograms also indicate the valley and mountain region stochastic predictions are 

less underdispersive than the layer 1 qv predictions.  As with the 2-m temperature 

predictions, the dispersion of the 2-m qv predictions is likely aided by the multi-physics 

and multi-land surface properties (including soil moisture) used in the ensemble.  In the 

case of the moisture field, the effect is evident not only in the valley region, but 

especially in the mountain region, which shows accurate dispersion (i.e., after correcting 

for bias, the uncertainty in the prediction is fully-sampled by the members).  The 

dispersion condition at 2-m in the coastal region is difficult to determine in Figure 59 due 

to the large moist bias, but the layer 1 qv predictions were more dispersive in this region 

than in the others. 

 The biases and error variances of the 2-m qv predictions (Figure 60) show that the 

moist bias in the coastal region is present in every member during the overnight hours, in 

contrast to the near-neutral overnight biases in most members in layer 1.  However, 

compared to the biases in layer 1, the 2-m biases are more consistent throughout the 

forecast period for each individual member.  Even after sunrise, when the biases decrease 

in both layers due to insufficient moistening of the boundary layer, the decrease is not as 

large in the 2-m predictions.  Between 10–16 h, the 2-m biases during fog missed 

opportunities in the coastal region are roughly the same as the biases for all the data.  

After sunrise the bias decreases are larger during missed opportunities, indicating the 

NWP model particularly struggles to moisten the boundary layer during this period when 

fog is present.  This characteristic of the predictions was also observed at layer 1. 
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Figure 59.   Verification rank histograms of 2-m qv for the coastal region (left), valley region 

(center), and mountain region (right).  The first six hours of each case are 
excluded. 

 Error variances are generally lower at 2-m than at layer 1, with less inter-member 

variability, indicating none of the physics suites is particularly better or worse at 

predicting moisture changes once they are corrected for bias.  Overall, the layer 1 qv 

predictions are more reliable than the 2-m predictions due to their near-neutral biases.  

However, with an appropriate bias correction, the 2-m predictions might actually be more 

useful to inform a qc adjustment due to their lower error variances and the consistent 

nature of the 2-m biases. 
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Figure 60.   2-m qv bias and error variance of each member for coastal (top two rows), valley 

(center two rows), and mountain (bottom two rows) regions.  The left column 
shows all data, and the right column includes only fog missed opportunities. 
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 When all the data is included, overnight biases in the valley region vary from -0.2 

to 0.5 g kg-1 for the members, with a slightly moist bias on average.  Between 10–15 h, 

the biases during fog missed opportunities are 0.1–0.2 g kg-1 lower than the biases for all 

the data, indicating a bias correction on the 2-m predictions in this region would still 

leave a slight dry bias during fog missed opportunities.  This was also the case with the 

layer 1 qv predictions.  With saturated air at 1000 mb and a temperature of 278 K, a qv 

bias of  -0.2 g kg-1 results in a predicted RH of 0.964, so the impact of this deficiency is 

relatively minimal, especially considering the bias for some members would be even 

smaller in magnitude than this.  The error variances for the 2-m qv predictions are 

comparable or slightly less than at layer 1, and the dry bias that averages -0.7 g kg-1 at 

initialization when fog is present is still evident in the 2-m predictions. 

 Overall, the 2-m qv predictions do not appear markedly more useful than the layer 

1 predictions as far as being leveraged to inform a qc adjustment in the valley region, with 

perhaps the largest advantage relating to the increased dispersion of the ensemble suite at 

2-m.  Incidentally, the greater dispersion is likely due in part to the wider variety of 

biases among the members at 2-m, which is not normally a desirable way to achieve 

dispersion (because it does not represent sampling of the true uncertainty in the 

prediction) and would actually be eliminated during a traditional member-specific bias 

correction.  Since no member-specific procedure will be pursued here, it remains to be 

seen whether the variety of uncorrected biases among the members negates the added 

benefit of slightly lower error variances at 2 m.  This question will be explored in 

subsequent chapters. 

 2-m qv dispersion in the mountain region also appears to benefit from a wide 

variety of biases among the members.  Greater dispersion notwithstanding, the 

predictions appear to offer little added value over the layer 1 predictions, with moist and 

inconsistent biases at 2 m, and error variances that are larger than at layer 1. 

7. 2-Meter Relative Humidity 

 The final predicted 2-m variable we will examine for its potential to be leveraged 

to improve the qc predictions is RH.  Of particular interest are the error characteristics of 

the 2-m RH predictions compared to the layer 1 RH predictions, as either could 
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potentially be used as a proxy for fog to adjust the zero qc forecasts.  2-m RH is computed 

using the 2-m predictions of temperature and qv from the WRF post-processing 

procedure.  Unlike in layer 1, there is no microphysics scheme used at this level, and so 

all members are able to supersaturate without bounds (similarity theory treats temperature 

and moisture profiles as independent variables, making no concessions for saturation).  

To prevent this from skewing the biases and error variances presented here, 2-m RH 

predictions exceeding 1 were reassigned a value of 1 prior to plotting in Figure 65.   

 The distributions of coastal RH predictions (Figure 61) show a systematic 

negative bias, which is also evident in the stochastic predictions as shown in the 

verification rank histogram (Figure 64) for this region.  Since the 2-m qv predictions have 

a moist bias in this region, we can conclude that the 2-m warm bias is the dominating 

deficiency leading to the negative 2-m RH bias.  Figure 65 shows that the negative RH 

biases and error variances are smaller at 2-m than they are at layer 1 (Figure 38).  Biases 

during fog missed opportunities average 0.049 lower than the total bias, which is not 

ideal but is less than the 0.081 average discrepancy in the layer 1 predictions.  Overall, 

the 2-m RH predictions appear slightly better suited than the layer 1 RH predictions to 

help identify zero qc predictions likely to be fog missed opportunities. 

 In the valley region, the distribution of 2-m RH predictions (Figure 62) has 

similar characteristics as the layer 1 RH predictions.  The predictions from most members 

remain bimodal, with excessive predictions of RH <0.7, and insufficient predictions of 

RH from 0.82–0.94, which account for 65.7% of the observations (many of which 

include fog).  However, to varying degrees, the members also have excessive predictions 

with an RH >0.94, which was not present in the layer 1 RH distributions.  The biases of 

individual members is smaller than at layer 1, with some members having a positive bias 

(Figure 65).  The average bias of all members at all post spin-up hours is -0.032, which is 

reflected as a small negative stochastic bias in the verification rank histogram (Figure 

64).  With the absence of any microphysics schemes, the inconsistent distributions among 

the members near saturation is no longer evident as it was at layer 1. 
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Figure 61.   Histogram of distribution of NWP 2-m RH predictions (blue bars), and 

observations (green bars) for coastal region.  The first six hours of each case are 
excluded.   
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Figure 62.   Same as in Figure 61, but only for the valley sites. 

 

 
Figure 63.   Same as in Figure 61, but only for the valley sites. 
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Figure 64.   Verification rank histograms of 2-m RH for the coastal region (left), valley region 
(center), and mountain region (right).  The first six hours of each case are 

excluded. 
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Figure 65.   2-m RH bias and error variance of each member for coastal (top two rows), valley 

(center two rows), and mountain (bottom two rows) regions.  The left column 
shows all data, and the right column includes only fog missed opportunities. 
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 The near-neutral biases by most members is explained by offsetting warm 

temperature and moist qv biases at 2-m, which makes the RH bias somewhat tenuous 

since it would be made worse by correcting for only one of the biases in either one of the 

components of RH.  Furthermore, the 2-m temperature and 2-m qv biases were shown to 

be substantially greater during fog missed opportunities, raising doubts about the value of 

a bias correction in either variable in this region.  Not surprisingly, the 2-m RH biases 

during fog missed opportunities are lower by 0.1–0.3 than the biases for all data, similar 

to the discrepancy seen in the layer 1 RH predictions.  The lower error variances and 

slightly better dispersion of the 2-m RH predictions suggests they are perhaps more 

useful as is than the layer 1 RH predictions to inform a qc adjustment technique, but the 

shortcomings in RH predictions at both levels makes it unlikely that using RH alone as a 

proxy for fog could be as successful as it might be in the coastal region. 

 2-m RH predictions in the mountain region are characterized by a positive bias 

attributed to the moist qv bias in the 2-m predictions.  Error variances are generally larger 

than in the layer 1 RH predictions, and vary substantially by member consistent with the 

2-m temperature and 2-m qv predictions in this region. 
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V. NWP POST-PROCESSING 

 In the previous chapter, we examined the performance and error characteristics of 

NWP model qc predictions, as well as predictions of the primary thermodynamic 

variables at the layer 1 and 2-m levels.  This revealed that a layer 1 negative RH bias is 

largely responsible for the lack of qc predictions in the coastal and valley regions, which 

is mostly due to a layer 1 warm bias that is strongest overnight.  It also revealed that 

certain aspects of the predictions have no obvious systematic error and are relatively 

accurate, such as the 2-m qv predictions in the valley region. 

 In this chapter, we develop several potential approaches to leverage the most 

useful aspects of the predictions to skillfully predict the probability of fog when the NWP 

model does not do so on its own (thereby mitigating the primary NWP model deficiency 

of insufficient fog predictions). The most basic of these approaches are informed by the 

most obvious error characteristics revealed in Chapter IV; for example, applying a 

temperature bias correction.  In addition, predictions of some of these variables will be 

shown to have less obvious predictive usefulness for fog, and these are pursued and 

explained as well.  The viability of each approach is tested using a form of “leave one 

out” cross-validation.   

 All nine of the NWP post-processing approaches developed and presented in this 

chapter are aimed at making skillful upward adjustments to zero or near-zero qc 

predictions.  Since our goal is to mitigate the impact of NWP systematic deficiencies 

rather than perform a member-specific calibration, the techniques are not tailored for 

individual members.  Regardless of the βe threshold being used for verification, the subset 

of predictions subject to post-processing does not change; it is only those with a qc 

prediction below the lowest βe threshold (0.29 km-1). 

Furthermore, to reduce complexity, the probabilisitic post-processing techniques 

described here are designed to directly provide a stochastic βe prediction rather than an 

adjusted qc prediction, a strategy that considers the combined effects of NWP prediction 

error and visibility parameterization error, but also renders them indistinguishable.  

Although the end result is largely the same, estimating the errors separately would better 
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facilitate an understanding of them, as well as help to develop future strategies for 

managing them. Relatively little is known about visibility parameterization uncertainty in 

light fog, and so it is left for future research to more fully explore this specific source of 

error.  Doing so might entail NWP output that includes additional variables vital to the 

relationship between qc and βe (such as N, droplet size distribution, etc.), a more refined 

parametric visibility parameterization designed for light fog conditions, and/or 

observations of qc against which to verify. 

An ideal VIF post-processing technique intended for operational use is able to be 

applied indiscriminately in any of the three region categories (i.e., across an entire NWP 

model domain), bypassing the need to pre-define region categories within the NWP 

model domain, which can be time-consuming and rather arbitrary (e.g., the geographical 

transition from a valley region to a mountain region is typically gradual, with further 

research needed to understand the nature of the NWP model error in these transition 

zones).  Therefore, each technique is first developed with optimization for an all regions 

domain; that is, with no region specificity. Subsequently, most of the techniques are re-

optimized for three additional domains made up of individual regions or region 

combinations, which leverages the unique severity of the systematic NWP error in each 

domain and/or the aspects of the predictions with the most predictive skill (e.g., error 

variances of the 2-m temperature and qv predictions are lower than at layer 1 in the 

coastal region, but significantly higher than at layer 1 in the mountain region).  In 

addition to the all regions domain, the three additional domains for which optimization is 

performed are a coastal-only domain, a valley-only domain, and a combined 

valley/mountain domain.  This work does not develop a post-processing technique for a 

mountain-only domain since VIF prediction skill from the NWP model is already 

comparatively high and is not likely to be aided by upward qc adjustments alone.  A 

combined coastal/mountain domain is also excluded due to the relatively fewer locales 

where these two regions exist absent some semblance of an intervening valley region. 

The domain-specific optimizations are intended for applications such as small 

NWP model domains with little geographical variation, or point forecasts for which the 

domain category can be appropriately defined.  Significant consideration and discussion 
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are given toward maintaining merely domain-specific optimization (with the intent that 

the techniques are transferable to other like domains) as opposed to approaching a site-

specific optimization.  

The techniques described in this chapter are presented in order of increasing 

sophistication, culminating in the use of joint parameter space of the NWP output to 

adjust the low qc predictions, which is generally shown to be most effective and to which 

we devote the majority of the discussion.  The techniques presented and tested before it 

are intended to document the viability of a variety of post-processing strategies, as well 

as serve as foundational building blocks for the joint parameter space techniques. 

Following a description of the post-processing techniques (which are summarized 

in Table 6) is an explanation of the cross-validation method used to test them.  Chapter 

VI discusses the testing results. 
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Table 6.   Summary of post-processing techniques tested, with symbols used in later 
figures.  All the techniques are first developed and tested without regional 

specificity, and some are then refined for specific regions or region 
combinations, which are listed. 

Symbol Name Description Optimization 
Domains 

 Cntrl Unaltered NWP predictions N/A 

 SCW Small, non-zero cloud water values All regions 

 RH_D RH threshold, deterministic All regions, coast, 
valley, valley/mountain 

 BiasRH_D RH threshold with 2-m temperature 
bias correction, deterministic 

All regions, coast, 
valley, valley/mountain 

 RH_P RH, probabilistic All regions, coast, 
valley, valley/mountain 

 BiasRH_P RH with 2-m temperature bias 
correction, probabilistic 

All regions, coast, 
valley, valley/mountain 

 JP_B Joint parameter space, best overall All regions, coast, 
valley, valley/mountain 

 JP_LB Joint parameter space, large bins All regions 

 JP_SB Joint parameter space, small bins All regions 

 JP_U Joint parameter space, best universal All regions, coast, 
valley/mountain 

Line Type Used in Results to Denote Domain Optimization 

 All regions domain 

 Individual coast or valley domain 

  Combined valley/mountain domain 

A. POST-PROCESSING TECHNIQUES 

1. Small, Non-Zero Cloud Water Values 

SCW tests whether small, non-zero qc predictions that are below the lowest 

verification threshold of 8.5 x 10-4 g m-3 represent a skillful fog indicator, or whether they 

are unskillful noise that should be treated as a zero qc forecast and therefore be subject to 

post-processing in the remaining experiments.  Assessment of the NWP predictions in 

Chapter IV revealed a surplus of zero qc predictions compared to observations, but also a 
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significant incidence of these small, non-zero qc predictions from members 16 and 17 

(Figures 18 and 19).  SCW is performed by deterministically adjusting these forecasts 

upward beyond each of the four verification thresholds.  The adjustment is made to any 

member whose qc prediction falls in the range 0 < qc < 8.5 x 10-4 g m-3, although the vast 

majority of the affected predictions are from members 16 and 17.  Rarely are more than 

two members affected by SWC at any given hour, so when the technique is invoked, the 

upward adjustment to the ensemble probabilistic forecast is a 10–20% increment in the 

probability of event forecast in almost all cases.   

The results of SCW, which are fully presented in the next chapter, will suggest 

that the small, non-zero qc forecasts are not random events but they also do not add 

appreciable skill improvement at any verification threshold.  For this latter reason, these 

predictions were treated as zero qc forecasts in the remaining post-processing 

experiments, and were subject to upward adjustments accordingly. 

2. RH Threshold, Deterministic 

RH_D tests the prospect of using an RH prediction threshold as a proxy for fog.  

In this technique, each zero qc forecast is deterministically adjusted upward beyond the 

fog verification threshold if the member’s RH forecast exceeds a fixed value.  2-m RH 

predictions are used instead of layer 1 RH prediction due to their lower error variances in 

the coastal and valley regions, total biases that better match the missed opportunity biases 

in the coastal region, and larger dispersion in the valley region.  The 2-m RH predictions 

were found to have larger error variances and biases than the layer 1 predictions in the 

mountain region. 

The optimal RH thresholds are determined by using the receiver operating 

characteristics (ROC curve) shown in Figure 66.  The plots show the false positive rate 

and POD achieved by using various RH thresholds as a proxy for fog at the lowest βe 

threshold (ROC curves and optimal thresholds are similar at the three other βe thresholds 

used for verification, and are not shown).  The plots were generated using only instances 
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when the member did not predict fog3, and also excludes the first six hours of each case.  

The optimal RH threshold is one with a low false positive rate and a high POD such that 

it is furthest from the diagonal green line toward the upper-left corner of the plot.  These 

are annotated in each plot with a large red marker. 

 
Figure 66.   Receiver operation characteristics (ROC curve) for various 2-m RH prediction 

thresholds as a classifier for observed fog in each of the four domains.  The 
optimal threshold is indicated with a large red marker.  The data only includes 

cases when the member did not predict fog.  The first six hours of each case are 
excluded. 

The optimal threshold in the coastal domain is shown to be 0.735, significantly 

lower than saturation due partly to the negative RH bias exhibited in this region. 

The data in the valley region indicates nearly all thresholds produce results to the 

lower-right of the green line, where they are less accurate as a fog classifier than random 

                                                 
3 Members 15 are 17 are excluded from this technique’s development and testing, as they are with all 

techniques involving 2-m predictions. 
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guessing because the false positive rate exceeds the POD.  However, if we instead 

consider these unskillful thresholds as a classifiers for no fog—such that predictions 

below the thresholds are deterministic adjusted to a fog prediction—the false positive rate 

(the rate at which the event is predicted among the times it does not occur) and the POD 

(the rate at which the event is predicted among the times is does occur) are reversed.  

Graphically, this has the effect of the plotted thresholds being reflected about the green 

line, resulting in some measure of accuracy for these thresholds as fog classifiers (or 

more appropriately, as fog reverse classifiers). 

If we consider all the RH thresholds plotted in the valley region ROC to be fog 

reverse classifiers, and therefore reflect the plotted points about the green line, an RH 

threshold of 0.885 would be furthest from the green line toward the upper-left of the plot 

and thus provide the most skill.  Physically, this is counterintuitive, as it means RH 

predictions below 0.885 are more likely to be observed fog cases than predictions above 

this threshold.  In this case, the reason for the results being reversed has to do with a 

warm bias that appears to preferentially exist when conditions are more favorable for fog, 

thus yielding erroneously low RH values during many fog cases. This unique 

characteristic of the 2-m RH classifier in the valley region will appear in later 

experiments and be explored further, but for RH_D, the threshold of 0.885 is applied as a 

reverse classifier for fog, and the results are tested accordingly. 

Note that the 2-m RH thresholds in the all regions domain and valley/mountain 

domain are not reverse classifiers, but are significantly lower (0.675 in both domains) 

than in the single-region domains.  When the unique characteristics of the valley region 

classifier profile are combined with the more conventional profile (i.e., higher predicted 

RH correlated to observed fog) from another region or regions, the optimal RH threshold 

ends up being lowered to the point that it simply undercuts the majority of valley region 

predictions corresponding to observed fog with predicted RH <0.885.  But it also groups 

these predictions with the RH predictions >0.885, an abundance of which correspond to 

observed no fog but which will be classified as fog by the post-processing.  This does not 

signify a great deal of promise for obtaining skill improvement in the valley region using 

the simple technique RH_D across a combined domain. 
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3. RH Threshold with 2-m Temperature Bias Correction, Deterministic 

BiasRH_D is identical to RH_D except that a correction of the 2-m temperature 

sample bias is applied to the predictions prior to computation of the optimal RH 

threshold.  The sample bias is computed in each domain using only the cases when 

members did not predict fog (since this is the subset of data subject to post-processing), 

which differs slightly from the overall bias (Table 7).  During testing of BiasRH_D, the 

bias itself is subject to leave one out cross-validation, and therefore changes slightly as 

the developmental data sample is changed.  This process is explained further later in this 

chapter.  The sample bias is computed with no member-specificity or time-dependency; 

the correction addresses the average member sample bias in the domain during the 

interval 7-20 h. 

Table 7.   Summary of the average 2-m temperature prediction bias (K) in each 
domain among all members for the period 7-20 h.  The bias used to perform 
a bias correction in BiasRH_D varies slightly from the overall bias because 

it is computed using only instances when fog was not predicted by the 
member. 

Domain Overall Bias Bias used for BiasRH_D 

All Regions +1.11 +1.23 

Coastal Region +3.19 +3.23 

Valley Region +0.93 +1.15 

Valley/Mountain Region +0.29 +0.35 

Since correcting for the bias lowers the 2-m temperature in each domain, the first-

order effect is to increase the optimal RH threshold used as the fog classifier compared to 

RH_D.  More significantly, correcting the bias has a non-linear effect on 2-m RH that is a 

function of the temperature (the correction will cause a larger RH increase at lower 

temperature), and it is the impact of these non-linear interactions that is examined in 

BiasRH_D.  2-m qv biases could be corrected in addition to or instead of 2-m temperature 

biases, but here we limit the correction to one variable to better evaluate the impact. 

Temperature biases are selected for correction instead of qv biases because the previous 

chapter revealed the negative RH bias at this level is primarily caused by a warm bias, 

while the qv bias is slightly positive in each region. 
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The ROC curves in Figure 67 show that the bias correction has the expected effect 

of raising the optimal RH threshold in each domain, particularly in the coastal region, 

where the largest bias correction was applied and the optimal RH threshold increased by 

nearly 0.17.  The threshold shows little change in the valley/mountain domain, where the 

negative biases of the mountain sites largely offset the positive biases in the valley sites, 

leading to a modest bias correction of only -0.35 K. 

Aside from an increase in the threshold in three of the four domains, there are no 

significant changes in the false positive rate or POD achieved in each domain at the 

optimal threshold, and the overall shape of the curves is virtually identical to those in RH-

_D.  Full verification results are presented in Chapter VI, but the similarity in ROC 

curves in RH_D and BiasRH_D suggests the non-linear relationship between temperature 

and RH is of minimal consequence to the RH error.  Applying a homogenous bias 

correction to the entire domain may have little affect on overall skill.  

As in RH_D, the ROC curves and optimal RH_thresholds for verification at the 

three higher βe thresholds (not shown) are similar to those shown in Figure 67. 
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Figure 67.   Same as in Figure 66, but after a 2-m temperature bias correction has been applied 

in each domain. 

4. RH, Probabilistic 

 RH_P examines the impact of using a probabilisitic as opposed to deterministic 

framework for the post-processing of each member.  By nature of using an ensemble in 

this work, all the VIF forecasts already provide some measure of stochastic information.  

However, RH_P further develops the framework of RH_D by producing a probability of 

exceedance of each βe verification threshold, rather than using a fixed 2-m RH threshold 

to arrive at a deterministic βe exceedance prediction. 

 The procedure for producing the probability of βe threshold exceedance is 

described using the data plotted in Figure 68.  For each of the four domains, the figure 

shows the total distribution of 2-m RH predictions when fog was not predicted, with the 

light blue portion of the distribution representing predictions coinciding with observed 

fog (using the lowest βe threshold), or the missed opportunities.  The purple portion of the 
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distribution therefore represents instances when fog was neither predicted or observed, 

also called the correct rejections.  Using the data from all regions as an example (top left 

panel), we see that when the members’ 2-m RH predictions fall in the bin 0.30–0.315, the 

ratio of observed fog cases (missed opportunities) to total plotted cases (missed 

opportunities plus correct rejections) is 4:63, or an incidence of 0.063.  This is lower than 

in the 0.90–0.915 RH bin, where the ratio is 221:742 for an incidence of 0.298.  

However, simply using the ratio in each fixed bin as our post-processed probability of 

exceedance becomes problematic when the number of cases in the bin is small.  Consider 

that the 63 total cases in the 0.30–0.315 bin could represent as little as 8 h of data from 

one day (one prediction per hour from eight members), a rather small dataset to evaluate 

a meaningful pattern to leverage in post-processing.  In contrast, large bins might have 

too many cases, which can conceal meaningful patterns in the data that would emerge if 

the bin were smaller. 

 This issue is addressed by using flexible bin sizes, such that each bin has the same 

number of cases.  This is achieved by defining the limits of the bin for any given RH 

prediction as one that captures a fixed number of nearest RH predictions.  In RH_P, this 

number is set to one-twelfth of all the data in the domain, which means each bin contains 

1660 predictions (out of nearly 20,000 total predictions) in the all regions domain.  The 

probability of βe exceedance for the member is then found by using the incidence of 

observed fog among the 1660 cases in the bin.  The corresponding predicted probability 

for any given RH prediction using this procedure is plotted with a black line in Figure 68. 

 The range of the bins using this method can vary widely, but this trait serves to 

equally balance across the entire prediction space the competing interests of overfitting 

the data (by making the bins too small) and surrendering predictive resolution (by making 

the bins too large).  Updating our previous example, an RH prediction of 0.3 uses as its 

bin predictions ranging from 0.1500 to 0.4495, which is a large range compared to other 

portions of the prediction space but buffers against the uncertainty that would otherwise 

exist in the procedure since there are very few cases with RH predictions this low.  The 

incidence of fog in this bin is 0.0946, and Figure 68 shows that the output probabilities 

change very little near the tails of the distribution where data are scarce. 
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Figure 68.   Distribution of 2-m RH predictions for each of the four domains when fog was 

not predicted by the member (qc <8.5 x 10-4 g m-3
).  The light blue portion of each 

distribution represents predictions corresponding to observed fog (βe >0.29 km-1).  
The black line represents the predicted probability of fog based on the post-

processing procedure.  The first six hours of each case are excluded. 

 In contrast, an RH prediction of 0.9 benefits from high data density during post-

processing, and so the bin is accordingly smaller, ranging from 0.8833 to 0.9167 with a 

fog incidence of 0.310.  Since there is more data at these values, the output probabilities 

are permitted greater sensitivity to small changes in the RH predictions, which allows 

them to leverage patterns in the data that might otherwise be diluted with larger bins.  An 

example of this is in the valley domain (bottom left panel), where the decreasing 

incidence of fog with increasing RH in the range 0.75–0.95 is evident and is consistent 

with the unique reverse classifier found in RH_D. 
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 As bin size (i.e., the number of cases included in each bin) increases, we can 

expect each bin to produce output probabilities closer to the climatological incidence of 

the entire data, which by definition will destroy resolution in the final predictions, but 

increases our likelihood of reliability improvements since the degree of overfitting the 

data will be reduced.  Decreasing bin sizes aims at greater resolution, but risks overfitting 

and instead reducing both reliability and resolution.  Until cross-validation is performed, 

it is impossible to know if overfitting has occurred (the reliability of the training data is 

always perfect).   A thorough optimization of bin sizes is not performed in this work, and 

without it, we use the one-twelfth size parameter in most experiments as a fairly 

conservative value after limited testing.  We will briefly examine the sensitivity of skill 

improvement to bin size in later experiments.  Even in the coastal region, which is the 

smallest domain, one-twelfth of the data translates to a bin size of 499 predictions, which 

equates to an average of 62 predictions per member, or at least five separate days of data 

(recall that each case is spaced three or four days apart to further reduce correlation 

among the cases).  For this work, we give high priority to pursuing an incremental skill 

increase with a framework that can transfer to other regions, an objective that must 

necessarily place emphasis on suppressing overfitting within reason.  Further 

experimentation with a larger dataset is warranted to determine if smaller bins are 

advisable in the interest of more aggressively pursuing resolution gains. 

 The impact of larger bin sizes is evident in the probability output profiles of RH-

_P as shown in Figure 68, which have a relatively limited range.  For example, output 

probabilities in the coastal region range from 0.056 to 0.316, while the climatological 

incidence of fog for all the data in the domain is 0.197.  This suggests large resolution 

improvements are unlikely in this case.  However, since the post-processing is only 

applied to members without fog already in their prediction, additional resolution in the 

final ensemble VIF prediction can still be achieved if the stochastic probabilities are 

preferentially increased for the observed fog cases, even if only by a few percent.   

 Simple logistical regression of the RH predictions against the observed incidence 

of fog is not pursued because Figure 68 shows the relationship between these variables is 

highly non-sigmoidal, or does not resemble a monotonic “S” shape prescribed by 
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logistical fitting if the relationship between RH and qc were linear.  Nonlinear regression 

might be used to describe the relationship, but this is a premature and perhaps 

inappropriate (without a larger dataset) course.  Alternatively, the nonlinear and 

physically unclear relationship implied by the data might be clarified by the inclusion of 

an additional predictor, which is the course chosen and developed in future experiments. 

 In the meantime, a simpler process is used to describe the curves in RH_P that 

more easily and quickly facilitates cross-validation.  Using the data in Figure 68 as an 

example, once the incidence of fog within each customized bin has been computed at 

every prediction value, the RH range between predictions is populated by linearly 

interpolating the incidence values from the two adjacent predictions.  This allows the 

framework to provide a probability of βe exceedance for any given 2-m RH prediction 

within the total RH range of the plot, which for the all regions domain is 0.042–1.454. 

The process of formally fitting a non-linear expression to the data, which is not required 

to employ any of the frameworks presented here, is left for future work. 

 Once the post-processed probability is computed for each member that did not 

predict fog on its own, the probabilities are combined with the predictions from the 

members that did predict fog (and therefore were not post-processed), and all the 

probabilities are normalized as described in Chapter IV.A.1 to arrive at a final probability 

of exceedance prediction. 

 The data used to develop the post-processing output for the probability of 

exceedance at the three other βe thresholds are shown in Figure 69 for each domain.  

Generally, the forecast probabilities decrease at higher βe thresholds, but the shape of the 

profiles are similar.  One notable exception is in the coastal region, which has a distinct 

absence of heavy fog events (i.e., at the highest βe threshold of 2.10 km-1) at higher RH 

predictions.    
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Figure 69.   Same as in Figure 68, but with the light blue portion of the distributions and the 

output probability of exceedance corresponding to each of the three other βe 
thresholds: 0.41 km-1 (left column), 0.68 km-1 (center column), 2.10 km-1 (right 

column).  The rows correspond to each of the four domains: all regions (top row), 
coastal region (second row), valley region (third row), and valley/mountain region 

(bottom row).  The first six hours of each case are excluded. 
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5. RH with 2-m Temperature Bias Correction, Probabilistic 

 BiasRH_P applies the same post-processing procedure as RH_P, but after the 2-m 

temperature bias correction has been applied according to Table 7.  The distribution of 

the predictions following the bias correction, as well as the probability output used in the 

post-processing, is shown in Figure 70 for each βe threshold.  As expected, the probability 

output profile of each plot is shifted toward higher RH values compared to the pre-bias 

corrected data in Figures 68 and 69.  The largest shift is in the coastal region domain, 

which was subject to the greatest bias correction.  More subtly, the bias correction has the 

effect of increasing the variance of the overall distribution, indicating that it has a larger 

impact on higher RH predictions than it does on lower RH prediction.  This can only be 

because the higher RH predictions coincide with lower temperature predictions.  Whether 

or not the performance of the post-processing is improved by the bias correction is 

determined by whether it affected the observed fog cases differently than the observed 

no-fog cases, and this is not immediately apparent, but is addressed by testing BiasRH_P 

with cross-validation. 
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Figure 70.   Same as in Figure 68 and Figure 69, but after a 2-m temperature bias correction 

has been made in the predictions.  The columns correspond to each of the four βe 
thresholds, increasing from left to right.  The rows correspond to each of the four 
domains: all regions (top row), coastal region (second row), valley region (third 
row), and valley/mountain region (bottom row).  The first six hours of each case 

are excluded. 

6. Joint Parameter Space, Best Overall 

a. Description  

  The rather limited range of probability forecasts prescribed by the profiles 

of RH_P and BiasRH_P suggest 2-m RH predictions alone have somewhat limited 

predictive usefulness for fog.  With the joint parameter space techniques developed in the 

following sections, we examine other NWP model parameters for their fog predictive 

usefulness, while also expanding the interrogation of predictors to two dimensions. 
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The framework of RH_P and BiasRH_P, in which the incidence of fog is 

measured within a flexible bin at every prediction value, is extended to joint parameters 

space in JP_B.  A tangible example of the advantage of joint parameter space is 

illustrated in the left panel of Figure 71, which takes the same data as in the coastal 

region plot of Figure 68 and extends it to two dimensions.  Here, predictions 

corresponding to observed fog (using the lowest βe threshold of 0.29 km-1 in this 

example) are plotted in red, and those corresponding to observed no fog are plotted in 

blue.  If we examine only the distribution in the x direction, the plot adequately conveys 

the same pattern shown in Figure 68, with a somewhat increasing but rather erratic 

incidence of observed fog as predicted RH increases.  However, by including a second 

parameter on the plot in Figure 71, we see a large portion of the observed no-fog cases 

with high RH predictions can be distinguished from the observed fog cases by nature of 

their lower 2-m vapor pressure predictions.  Incidentally, the reason for this is not due to 

any substantial change in NWP model error; at high RH, fog is simply observed less 

often at lower temperatures (and therefore lower vapor pressures) in the coastal region.  

This example illustrates why two predictors are advantageous, and this particular 

characteristic of coastal region fog will prove to have significant predictive usefulness 

and will be examined in later experiments. 

 
Figure 71.   Scatter plot of fog missed opportunities (red) and fog correct rejections (blue) 

within a joint parameter space using 2-m RH predictions and 2-m vapor pressure 
predictions as the parameter pair.  The right panel shows the forecast probability 
map derived from the plotted data.  The first six hours of each case are excluded. 
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In order to arrive at a forecast probability of fog using the joint parameter 

space, the concept of flexible bins used in RH_P and BiasRH_P is also extended to two 

dimensions.  The bin for any given prediction plotted in the 2-D space consists of a circle 

centered at the prediction, and of sufficient radius to capture one-twelfth of the total data.  

Since the two axes of the joint parameter space plot will normally have different scaling, 

a correction is applied to the circle axes based on the ratio of the total range of the data 

for each parameter.  The effect of this correction is to keep the bins relatively circular as 

they would appear on the plot, as opposed to becoming highly elliptical in some cases. 

Once the bin is established, the post-processed probability forecast is 

based on the incidence of fog within the bin.  The right panel of Figure 71 shows the 

probability forecasts of the prediction space after contouring has been applied.  As with 

the probabilistic single parameter experiments, no attempt is made to fit the multivariate 

relationship to an expression via multiple regression.  For a linear relationship to exist 

between βe and the predictors, u1 and u2, the predicted probabilities of βe threshold 

exceedance (as plotted in Figure 71) do not need to also be linear along u1 and u2, but 

should be monotonic along u1 (at all values of u2) and u2 (at all values of u1), ideally 

taking on a two-dimensional sigmoid shape (Figure 72) in some orientation.  In Figure 71 

and every other joint parameter experiment presented in this work, the probability 

forecasts are non-monotonic in both axes directions, indicating the relationship between 

the predictors and βe is non-linear.  This suggests a multiple nonlinear regression 

technique is needed to properly fit the data to an expression. 
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Figure 72.   Notational illustration of a two-dimensional sigmoid plotted in the joint parameter 
space u1, u2, with probability plotted in a third dimension rather than contoured as 

in other plots.  (After Yang 2009). 

A multiple nonlinear regression technique is prematurely complex for this 

stage of the framework development, and ultimately unnecessary for implementation.  

Instead, the exceedance probabilities in the portions of the joint space between each 

prediction are two-dimensionally interpolated using a Delauney triangulation scheme 

(Delauney 1934), which for irregularly spaced (i.e., non-gridded) data is preferable to 

bilinear interpolation.  In Delauney triangulation, the joint parameter space is broken into 

small triangles with vertices located at the data points (Figure 73).  Conceptually, for any 

given triangle, each of its three vertices can be raised to a height corresponding to its 

probability of exceedance value, and any given point within the triangle then also has a 

height and corresponding value.  Using this method, all portions of the joint space have a 

defined probability of βe exceedance value that is be applied to any new predictions of u1 

and u2 from the NWP model.  Further details on Delauney triangulation are found in 

Barber et al. (1996). 
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Figure 73.   Notational illustration of Dulauney triangulation in the two-dimensional joint 

parameter space u1, u2.  In this example the probability forecast values plotted on 
a third axis to aid in the conceptual visualization of the interpolation scheme.  

(After The Mathworks, Inc. 2009). 

Using a strict interpolation strategy such as Delauney triangulation for 

every data point in the joint parameter space might at first seem to risk drastic overfitting 

of the data.  However, recall that the dependent variable being fit is the probability of βe 

exceedance based on the observed incidence within a bin containing hundreds of nearby 

predictions.  Therefore, the probability of βe exceedance changes very little over short 

distances in the joint space. The degree of data overfitting is controlled by the bin size. 

Clearly, using joint parameters achieves some measure of additional 

separation between the observed fog cases and no-fog cases, allowing output probabilities 

to range from 0.549 (at high 2-m RH predictions and high 2-m water vapor predictions) 

to 0.002 (at low 2-m water vapor predictions).  This range is significantly larger than the 

range obtained with single predictors in RH_P and BiasRH_P, but the results are also 

quite different.  In those experiments, the lowest probability values were found at low RH 

prediction values, while the 2-D space of Figure 71 shows that probabilities are just as 

low (in fact slightly lower) during high RH predictions if the 2-m water vapor prediction 

is low.  Furthermore, Figure 71 suggests that 2-m water vapor predictions are a better 

predictor of fog than the 2-m RH predictions (when fog is not already predicted by the 

member), as the probabilities have more variation in the y-direction than in the x-

direction in Figure 71. 
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Examining the highest and lowest output probabilities on any single-

parameter or joint-parameter plot provides some indication of how well the observed fog 

cases are spatially separated from the no-fog cases, which in turn provides an indication 

of likely improvement in predictive resolution.  But more thoroughly, the likely 

predictive resolution can be assessed by computing the variance of the output 

probabilities themselves; that is, the mean squared difference between the output 

probability at each point and the climatological fog incidence of the entire plotted data.  

This is analogous to the resolution measurement of a stochastic prediction, where very 

low or very high probabilities are preferable to probabilities near the climatological 

incidence.  Since the reliability of any plot of this kind is inherently perfect for the 

training data, and the bin size is standardized (which effectively equalizes the potential 

impact of data overfitting for any given parameter pair), we are able to use the variance 

of the plot as a rather powerful quantitative assessment tool for evaluating the merit of 

numerous parameter pairs and revealing patterns of NWP model behavior prior to 

performing a full cross-validation.  There is no presumption that, in real-world use, the 

reliability of the parameter space will be perfect and the resolution can be exactly 

measured by the plot variance; indeed the degree to which these assertions break down 

depends on the degree of overfitting of the training data, which will be examined during 

cross-validation.  For now, we use these assumptions to assist with selecting the most 

promising parameter pairs prior to cross-validation, while emphasizing the fact that 

standardizing the bin sizes makes this simplification reasonably valid. 

Since the variance is computed using the mean squared difference at each 

plotted point, it is naturally weighted toward portions of the plot where the data density is 

highest (and where future predictions are most likely to exist).  In addition to variance of 

the plot, subjective evaluation is also required to establish a physical mechanism by 

which the parameters achieve their predictive usefulness (and furthermore, the likely 

transferability of the procedure to other locales), and this is clearer in some cases than in 

others. 

Compelling arguments can be made for evaluating a wide variety of basic 

and derived parameters, especially if a location-specific statistical calibration is the aim 
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(e.g., Bankert and Hadjimichael 2007, Marzban et al. 2007).  In total, nearly 1000 joint 

parameter pairs were initially evaluated in each domain in order to select the most 

promising parameter pairs for full cross-validation. In the interest of facilitating an 

interpretation of the results within the context of the systematic NWP model errors 

detailed earlier in this work, we mainly limit the parameter candidates to temperature and 

moisture variables at the layer 1 and 2-m levels, as well as parameters that are easily 

derived from them, such as RH, virtual temperature, and vapor pressure depression (i.e., 

the difference between the saturation vapor pressure and the vapor pressure).  In addition, 

the variable deficits, which are defined as the 2-m prediction values minus the layer 1 

prediction values, are evaluated as parameter candidates as part of a parameter pair. 

Some of the NWP model deficiencies examined in Chapter IV exhibit a 

time dependence, which degrades the effectiveness of a simple bias correction unless it 

too is time dependent.  This might be alleviated by including forecast hour or time of day 

as a parameter in the joint parameter space techniques, but as an option to address time-

dependent deficiencies we instead include the time rate of change of each parameter as its 

own parameter candidate.  As an example, the post-sunrise hours might be characterized 

by increasing predicted temperature or decreasing predicted RH, and so the two distinct 

presentations of 2-m RH biases (for instance) might be effectively parsed by including 

the time rate of change of one of these parameters (instead of the parameter itself) in the 

parameter pair.  From the standpoint of maximizing transferability of the technique, this 

approach is believed preferable for addressing time-dependent biases because it is based 

on output from the NWP model itself.  In contrast, using time of day as a predictor may 

not transfer well to other latitudes or seasons since any diurnal cycles (to include sunrise 

and sunset) could vary by several hours.  For any given parameter, its time rate of change 

is computed by subtracting the prediction from the previous hour to obtain the 1-h change 

as predicted by the NWP model. 

Predictions of 850-hPa wind direction were also evaluated as a parameter 

candidate based on the rather primitive proposition that they provide some information on 

airmass type, and therefore the droplet number concentration, N.  Results mostly rejected 

this premise, but one notable finding is presented in Appendix A. 
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The complete list of parameter candidates initially considered for the joint 

parameter space experiments are listed in Table 8.  Including the time rates of change of 

each parameter, there are 946 possible joint parameter combinations.  For more than half 

of these, the plot variance is computed in each domain at the lowest βe threshold (0.29 

km-1), with the remainder of the parameter pairs able to be logically ruled out as viable 

options due to the poor predictive usefulness of one of the parameters in the pair.  Once 

the plot variances were evaluated at the lowest βe threshold, the 20 parameter pairs 

producing the highest plot variance in each domain had their plot variances computed at 

the remaining three βe thresholds.  Any other parameter pairs subjectively determined to 

be promising or interesting also had their plot variances computed at the remaining three 

βe thresholds4. 

Some of the parameters in Table 8 might appear redundant, such as 

temperature and saturation vapor pressure, but they produced a plot variance that differed 

by up to 7% (when paired with the same parameter), enough to potentially make 

appreciable resolution differences in the final predictive skill.  While saturation vapor 

pressure is a function of only the temperature, the relationship is exponential, indicating 

that differences in scaling of otherwise similar parameters could be an important factor in 

parsing observed fog from observed no fog in the joint space. 

 

 

 

 

 

 

                                                 
4 The initial evaluation of the joint parameter pairs was performed with the output from members 15 

and 17 included.  Once the bug regarding the 2-m predictions in these members was discovered, all the 
plots discussed in this work affected by the bug (i.e. if either of their variables involved a 2-m prediction) 
were reevaluated with the two members removed.  For joint parameter pairs that do not involve the 2-m 
level, no change was made.   
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Table 8.   Predicted parameters considered for use in a parameter pair to define a joint 
parameter space.  In addition, the one-hour time rate of change of each 

parameter is also considered as its own parameter.  The cloud water mass 
concentration predictions tested for use in a parameter pair only include 
values <8.5 x 10-4 g m-3 since anything larger than this is not subject to 

post-processing and therefore is not in the training data. 

Parameters 

Layer 1 temperature 

Layer 1 water vapor mixing ratio  

2-m virtual temperature 

2-m RH 

Layer 1 virtual temperature 

Layer 1 RH  

Layer 1 vapor pressure depression 

Layer 1 saturation vapor pressure  

Layer 1 vapor pressure 

2-m temperature 

2-m water vapor mixing ratio  

2-m saturation vapor pressure  

2-m vapor pressure 

2-m vapor pressure depression 

Temperature deficit 

Saturation vapor pressure deficit 

Vapor pressure deficit 

Virtual temperature deficit 

RH deficit 

Vapor pressure depression deficit 

850-hPa wind direction 

Cloud water mass concentration, qc 

 

No attempt was made to apply any bias correction to the predictions prior 

to plotting and evaluating them in joint space.  Applying a bias correction to a plotted 

parameter itself would serve to uniformly shift the data along its axis, having no effect on 

the skill of the post-processing procedure.  Applying a bias correction to a component of 

a parameter such that there was a non-linear effect (e.g., correcting temperature prior to 

plotting RH as we did in BiasRH_D and BiasRH_P) would affect the results, but previous 

experiments showed a relatively minor impact in most cases.  If we correct for 2-m 

temperature bias prior to producing the joint parameter plot in Figure 71 for the coastal 

region, the plot variance changes by a negligible 0.11%.  Presumably, the impact could 

be larger depending on the parameters involved and the magnitude of the biases, but this 

will not be examined in this work. 

The discussion here will primarily focus on the parameter pairs that 

performed well across all four βe thresholds, with the most emphasis on the lowest 
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threshold (i.e., the ability to predict any fog of any severity is given higher priority than 

the ability to predict only the heavy fog cases).  Other evaluation approaches are possible, 

including using one parameter pair to predict fog, and another to predict the fog severity 

(i.e., the conditional probability of heavy fog), which we believe is a promising future 

path.  However, here we aim to establish the single best parameter pair to be used across 

all severities of fog. 

Experiments JP_B and JP_U present the most promising parameter pairs 

for each domain that were subject to full cross-validation.  For JP_B, we examine and 

cross-validate the single parameter pair in each domain producing the largest sum of plot 

variances at each of the four βe thresholds.  For any given parameter pair in a domain, this 

sum is inherently weighted toward the lower βe thresholds because the plot variances 

have more variability among parameter pairs at the lower βe thresholds.  For some 

domains, it is reasonable to believe that the predictive usefulness of the parameter pairs in 

JP_B are closely based on a rather localized aspect of the climatology.  If this is the case, 

even cross-validation might not fully expose this shortcoming because each site within a 

region is subject to similar climatology.  Later, JP_U will take a more critical view and 

examine parameter pair options with more transferability.  

b. Coastal Optimization  

  The coastal and valley domains are examined first so that we are better 

able to later interpret the results in the combined domains.  The parameter pair producing 

the largest sum of plot variances at each of the four βe thresholds in the coastal domain is 

the time rate of change of virtual temperature paired with 2-m vapor pressure (Figure 74).  

The plots show that distinguishing heavy fog events in the joint parameter space is less 

successful than distinguishing any fog event, as the probabilities (and plot resolution) are 

significantly lower at the higher βe thresholds. 
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Figure 74.   Same as in Figure 71, but for d/dt 2-m virtual temperature vs 2-m vapor pressure.  

The rows correspond to each of the four βe thresholds, increasing from top to 
bottom. 
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As previously discussed and shown in Figure 71, the 2-m vapor pressure 

predictions exhibit high predictive usefulness in this region, despite having a significant 

moist bias.  Regardless, error variances of 2-m qv were shown to be quite low in this 

region, and so the data in Figure 74 conveys that fog simply has a low incidence when the 

2-m vapor pressure (predicted or observed) is low.  In large part, the mechanism behind 

this connection is proposed to be related to marine boundary layer stability.  During the 

overnight hours, the vapor pressure in this region is closely correlated to the temperature, 

and at low temperatures, upward heat flux from the sea surface maintains a weakly 

turbulent boundary layer that favors low stratus clouds as opposed to fog.  In contrast, at 

higher vapor pressures and temperatures, the boundary layer is stable and fog is more 

easily formed. 

In fact, if we ignore bias, the 2-m vapor pressure predictions are a better 

predictor of observed temperature than the 2-m temperature predictions themselves 

during the overnight hours.  This is illustrated in Figure 75, which shows the mean error 

variance across all members of the 2-m saturation vapor pressure predictions (solid blue 

line) are higher than the error variance when the 2-m vapor pressure predictions are 

verified against the 2-m saturation vapor predictions (dashed red line).  It is believed this 

is why 2-m vapor pressure, as opposed to saturation vapor pressure or temperature, better 

accounts for the stability condition above the sea surface.  The overnight bias between the 

vapor pressure predictions and saturation vapor pressure observations is <0.2 hPa (not 

shown).  Therefore, Figure 74 suggests the probability of fog abruptly increases when the 

observed saturation vapor pressure exceeds roughly 10 hPa, which translates to a 

temperature of about 286 K.  According to buoy data at the Trinidad pier situated 

between KCEC and KACV, the water temperature during the period of study ranged 

from 282-285 K (National Data Buoy Center 2012), just below this critical air 

temperature threshold and supporting the notion that the air-water temperature difference 

and resulting marine boundary layer stability plays a role in the fog predictive usefulness 

of the 2-m vapor pressure predictions. 

A vapor pressure prediction >10 hPa does not guarantee fog, but simply 

makes it more likely (the maximum probability output is 0.653 for the lowest βe threshold 
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of 0.29   km-1).  Examination of the synoptic pattern during the period of study reveals 

that elevated vapor pressures most often occur during the 1–2 days leading up to a frontal 

passage associated with an offshore low pressure system (not shown).  During this 

scenario, southwesterly (onshore) flow is often present, which not only raises the vapor 

pressure but also increases the probability of offshore fog being advected inland.  

Although the output probabilities of Figure 74 show less variation in the direction of 2-m 

virtual temperature changes, the dependence of fog on this parameter is believed to be 

tied to the diurnal cycle.  When the vapor pressure is high enough, the plot shows fog is 

most likely if the predicted 2-m virtual temperature change is zero or slightly negative, 

which occurs in the model for more frequently during the overnight hours than during the 

day (not shown).  Increases in the 2-m virtual temperature predictions are consistently 

present after sunrise, when the incidence of fog is lower. 

 

Figure 75.   Mean error variance (across all members) of two NWP model variables when 
verified against the observed saturation vapor pressure in the coastal region: the 2-
m saturation vapor pressure (solid blue) and the 2-m vapor pressure (dashed red). 

This particular parameter pair, while clearly offering the potential for high 

resolution in the test region, might be significantly less useful in a coastal locale with a 

different water temperature, or even in the test locale but during a different season.  If so, 

this flaw might not be revealed even with cross-validation since the testing sites do not 

change, and water temperatures change by only a few degrees over the course of the 

study period.  One potential preventative measure for this might be to adjust the 

technique to account for the local water temperature.  In a later experiment, we will take 
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another approach by examining a different parameter pair with predictive usefulness 

believed to be less-specific to the local climatology of the test sites. 

c. Valley Optimization  

  In the valley domain, the parameter pair producing the largest sum of plot 

variances at each of the four βe thresholds is the saturation vapor pressure deficit paired 

with layer 1 vapor pressure depression (Figure 76—note that the y-axis has been inverted 

such that smaller vapor pressure depressions, which generally correspond to higher RH, 

are toward the top of the plot). Saturation vapor pressure deficit appears to possess more 

predictive usefulness, with negative values (i.e., the 2-m prediction is less than the layer 1 

prediction) associated with high fog probabilities.  As saturation vapor pressure depends 

only on temperature, this region of the plot corresponds to predicted low-level 

temperature inversions, which in this region are typically produced by overnight 

radiational cooling of the ground and are a requisite condition for radiation fog.  To a 

certain extent, leveraging the temperature deficit predictions helps mitigate the impact of 

volatility in the temperature, qv, and RH predictions, which were shown to have 

inconsistent biases during fog missed opportunities.  Regardless of these biases at each 

level of the NWP model, the predictions of temperature deficit appear to be a viable 

predictive indicator of fog, with a large portion of the space producing fog probabilities 

exceeding 0.8 at the lowest βe threshold. 
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Figure 76.   Same as in Figure 71, but for the valley region.  The parameters are saturation 

vapor pressure deficit and layer 1 vapor pressure depression. The rows correspond 
to each of the four βe thresholds, increasing from top to bottom. 
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Even when an inversion is predicted, the data show fog is less likely when 

the layer 1 vapor pressure deficit is very small, which corresponds to high RH.  A similar 

trend was observed in the 2-m RH post-processing data earlier in this chapter, where high 

RH values were associated with lower fog probabilities.  The reason for this connection is 

traced to the temperature initialization of the model and subsequent cooling rates during 

the early evening prior to fog development.  Figure 77 plots the mean observed and 

predicted saturation vapor pressure for the valley sites on days when overnight or 

morning fog would eventually be observed (left panel), and on days without fog.  The 

plots do not include cases when fog was predicted.  The vapor pressure is also plotted for 

context, although it does not appear to play a crucial role.  The fog days are characterized 

by more rapid cooling, which continues until sunrise near 16 h.  This is consistent with a 

conventional radiation fog scenario, which is often supported by minimal cloud coverage 

and light winds that aid in the cooling rate. 

 

Figure 77.   Mean observed and predicted saturation vapor pressure and vapor pressure at the 
valley region sites for (left) days when fog occurred and was not predicted 

between 10–17 h, and (right) days when fog did not occur and was not predicted 
between 10–17 h. 

On average, the cooling rate predictions are accurate, but saturation vapor 

pressure is initialized too high by about 3 hPa (or about 2-3 K), and maintains this bias 

throughout the night, resulting in erroneously low RH predictions.  In contrast, the cases 

without fog have lower afternoon temperatures and smaller cooling rates throughout the 

nighttime, oftentimes due to cloud cover and/or higher wind speeds.  In these cases, the 
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NWP model predictions have minimal temperature biases during initialization and 

throughout the nighttime, and RH biases are much lower in these cases.  Furthermore, in 

cases when the model correctly predicts a fog day (which the average member does for 

26% of the fog days), the initialization bias is slightly <0, and is followed by a relatively 

unbiased cooling rate (not shown).  

Clearly, initialization bias is associated with the missed fog events and 

warrants further examination in future studies.  Notably, on the correctly predicted fog 

days (for which the initialization bias is slightly negative), the observed temperature at 

initialization averages 1.7 K lower than on days when fog is missed by the members.  

This suggests the initialization error is more likely or more severe on warmer days, which 

are also aided by clear skies and light winds and may explain why it preferentially affects 

the NWP model on nights with fog. 

Observed RH during the nighttime shows little difference between the fog 

and no-fog cases plotted in Figure 77.  Furthermore, the predicted RH values during the 

no-fog cases are reasonably accurate with just small positive biases stemming from 

slightly positive vapor pressure biases.  So although the warm initialization error and 

warm biases during the fog cases result in larger RH biases, the deficiency seems to serve 

as an unconventional but effective predictor for fog when paired with saturation vapor 

pressure deficit in the joint parameter space.  Since observed RH values show only minor 

difference between the fog and no-fog cases, correcting the initialization deficiency and 

RH bias might actually reduce the predictability of radiation fog absent a suitable 

replacement that similarly leverages a thermodynamical indicator. 

These results offer a subtle contrast to the low-level cooling rates 

suggested by Tardif (2007) for use as a radiation fog predictor.  As it were, cooling rates 

produced post-processing plots with variances about 30% lower than those in Figure 76, 

and even then only when paired with saturation vapor pressure deficit in the joint 

parameter space.  Even so, Figure 77 suggests cooling rates could be a valuable 

alternative for identifying radiation fog likelihood, perhaps more so if post-processed in a 

way that allows the response in fog probability to lag the indicator (e.g., a high cooling 

rates result in high fog probabilities at a later forecast hour).  No such capability is tested 
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here, and the individual performance characteristics of the NWP model used will 

certainly inform the results (particularly regarding something as specific as initialization 

error, which could be unique to the downscaling process or assimilation system used). 

Nevertheless, saturation vapor pressure deficits are conceptually tied to cooling rates, and 

for these WRF runs they are found to offer the most promising predictive skill in the 

valley region when paired with layer 1 predictions of vapor pressure depression. 

d. Valley/Mountain Optimization  

  As we detailed in Chapter IV, qc predictions in the mountain region are 

already more skillful than the other regions and do not contain a strong negative bias.  

Therefore, making upward adjustments to the qc predictions alone is not believed to offer 

the same potential for skill improvement, and the post-processing framework developed 

in this work is not well-suited for the region.  When combined with other regions to 

simulate operational realities, the parameter pairs with the most predictive usefulness are 

those where the mountain region predictions exist in a different sector of the space than 

the rest of the data, and can therefore be assigned appropriately low probabilities (since 

fog has the lowest incidence in this region). This is beneficial for the other regions 

involved as well, as their probabilities are not erroneously lowered by excessive influence 

from the mountain region predictions. 

Different valley and mountain behavior leads to the parameter pair with 

the largest sum of plot variances at each of the four βe thresholds in a combined 

valley/mountain domain (Figure 78), which utilizes predictions of virtual temperature 

deficit paired with layer 1 vapor pressure to distinguish the fog cases from the no-fog 

cases.  The predictive usefulness of this former variable is not surprising, as it serves to 

identify inversions similar to how the saturation vapor pressure deficit was utilized in the 

valley region.  In fact, saturation vapor pressure deficit could be substituted into this 

combined region plot, and still produce the second-highest variance of all the parameter 

combinations tested.  The difference is nearly negligible. 
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Figure 78.   Same as in Figure 71, but for the valley/mountain domain.  The parameters are 

virtual temperature deficit and layer 1 vapor pressure. The rows correspond to 
each of the four βe thresholds, increasing from top to bottom. 
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Layer 1 vapor pressure acts to effectively separate many of the mountain 

data from the valley data.  The majority of mountain vapor pressures <6 hPa due to dryer 

conditions at higher elevation.  (Note that vapor pressure is a function only of dew point 

temperature, and is not directly impacted by pressure changes associated with changes in 

elevation.  However, it is likely to be lower at lower pressure by nature of the cooler 

temperatures and lower dew point temperatures typical of a high-elevation environment).  

These low vapor pressure predictions translate to the lowest probability outputs of 

anywhere in the joint parameter space, a large portion of which is associated with 

probabilities <0.1. 

In contrast, the vapor pressure predictions in the valley region rarely drop 

below 5 hPa, and are therefore mostly affected by the upper portion of the space where 

the virtual temperature deficit plays a primary role.  Note that although the area of highest 

probabilities associated with temperature inversions is smaller than what was achieved in 

the valley-only region (Figure 76), the probabilities at the lowest βe (0.29 km-1) in the 

combined domain still exceed 0.8 near the center of the space, indicating the presence of 

the mountain data does not appear to drastically impede the predictive usefulness of these 

features.  Fog is relatively rare in the valley region at observed vapor pressures <6hPa 

(not shown), and the low probabilities in this portion of the plot are not necessarily 

incompatible with valley region predictions.  The limited data in the uppermost portions 

of the space with vapor pressure predictions >12 hPa are mostly associated with a few 

cases of warm frontal passage, all of which occur in the valley region and some of which 

occur with fog. 

Using vapor pressure as a mechanism to separate data from each region is 

done at the expense of being able to use vapor pressure depression as a parameter in the 

pairs to refine the valley fog probabilities as was done in the valley-only domain.  The 

results section will formally quantify the impact of this tradeoff on the valley region VIF 

skill, as well as detail the impact (detrimental or otherwise) the post-processing has on 

VIF skill in the mountain region. 
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e. All Regions Optimization 

  A single pair of predictors viable for all regions would be most desirable 

from an operational standpoint since it could conceivably be applied across a large model 

domain without the need to pre-define region categories.  For this JP_B experiment 

optimized for the all regions domain, cross-validation will evaluate whether combining 

all the data is feasible for a simplified framework. 

The joint parameter pair producing the largest sum of plot variances at 

each of the four βe thresholds (Figure 79) is the same as for the valley/mountain domain.  

This is logical considering the high predictive usefulness of 2-m vapor pressure 

predictions revealed in the coastal domain, and the fact that both the coastal and valley 

domains are shown to have their highest fog probabilities within a similar range of 

predicted vapor pressures.  Specifically, the highest fog probabilities in the coastal 

domain are between 10–12 hPa, slightly higher than the 9–10 hPa values corresponding 

to the maximum probabilities in the valley/mountain parameter space.  The addition of 

the coastal prediction data draws the area of highest fog probabilities to slightly higher 

predicted vapor pressures compared to Figure 78.  The values of these highest 

probabilities is between 0.7 and 0.8, which is higher than the maximum probabilities in 

the coastal domain (0.6–0.7) and lower than those in the valley/mountain domain (0.8–

0.9). 

The coastal region has different sensitivity to predicted radiation 

inversions from the valley region, but the nature of the pattern is the same.  Fog is 

favored during negative virtual temperature deficits.  The coastal data contains a large 

number of no-fog observations during predictions of low vapor pressure (6–9 hPa) and a 

statically unstable lower boundary layer (virtual temperature deficits of 0–2), a relatively 

common scenario in this region even during the nighttime.  This has lowered the 

probabilities in this portion of the space, which also contains a limited number of fog 

observations in the valley region mostly associated with dissipating heavy radiation fog  
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that has lingered into the late morning hours.  These valley fog events not associated with 

a predicted inversion are not very well resolved in any joint parameter space, but the 

lowering of probabilities in this space caused by the coastal data may limit any potential 

VIF skill increases in the valley region during these hours. 
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Figure 79.   Same as in Figure 71, but for the all regions domain.  The parameters are virtual 

temperature deficit and layer 1 vapor pressure. The rows correspond to each of the 
four βe thresholds, increasing from top to bottom. 
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Figure 78 and Figure 79 are largely unchanged below 5 hPa, potentially 

signaling their post-processing impact on VIF predictive skill in the mountain region will 

be similar.   

7. Joint Parameter Space, Sensitivity to Bin Size 

 In this framework, the degree to which the training data is overfitted is a function 

of the bin size.  Larger bins reduce the risk of overfitting and increase the likelihood of 

reliability improvement, but potentially reduce resolution as the probability forecasts 

approach the climatological incidence.  Bins that are too small and have overfitted the 

training data have captured unresolved high-frequency variations in the predictions rather 

than a systematic NWP model behavior, potentially resulting in reliability and resolution 

decreases. 

 In order to examine these impacts of bin size changes in the joint parameter space 

post-processing framework, predictions are tested using modified versions of the all 

regions joint parameter space map developed in JP_B.  For the large bin experiment, JP-

_LB, the bin size was increased by 50%, such that each bin includes one-eighth of the 

total data rather then the one-twelfth figure used elsewhere.  For the all regions domain 

used in the experiment, this results in 2490 predictions in each bin.  JP_SB uses bins that 

are 33% smaller than JP_B, or one-eighteenth of the total data for a bin size of 1107 

predictions. 

 Variation of post-processing maps with bin size is shown in Figure 80, with the 

standard bin size used in JP_B also included for comparison (center column).  As bin size 

decreases, the bins reveal more fine scale structure of the space, with a wider probability 

range and higher overall plot variance.  Cross-validation is performed using these maps to 

gauge the extent to which these structures represent systematic NWP behavior as opposed 

to overfitted training data.  It will also serve to present the basic considerations regarding 

predictive reliability and resolution when selecting bin size or other contouring strategies 

in the parameter space. 
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Figure 80.   The joint parameter map from JP_B for the all regions domain, with bin sizes 

increased 50% (left column) and decreased 33% (right column).  The center 
column shows unchanged bin sizes (i.e., identical to JP_B) for comparison.  The 
rows correspond to each of the four βe thresholds, increasing from top to bottom. 

8. Joint Parameter Space, Best Universal 

 JP_U represents a best effort to maximize the transferability of the post-

processing framework developed in this work.  It cross-validates a parameter pair for 

each domain might have more transferability within it domain category because its 

predictive usefulness is believed to be less reliant on a particular aspect of the local 
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climatology than the best overall parameter pairs tested in JP_B.  These parameter pairs 

are termed universal for this reason.  Selection of these pairs also is highly subjective 

compared to simply identifying the largest variances as was done for JP_B, and is further 

complicated by the fact that the physical mechanisms behind the success of certain 

parameter pairs are not readily apparent.  In addition to examining the plot variances of 

the parameter pairs, particular deference was given to parameter pairs using derived 

variables that entail a ratio (e.g., RH), difference (e.g., vapor pressure deficit), or time 

rate of change, as these were often more easily ascribed to reasonable physical 

mechanisms not heavily dependent on local climatology.  In contrast, absolute variables 

such as vapor pressure usually appeared more likely to be associated with a localized 

phenomenon and were generally avoided. 

 The increased transferability sought in JP_U was not performed with inter-

domain transferability in mind, but instead refers to transferability to a different locale 

with the same geographic region makeup, and perhaps during a different season.  

Therefore, the four-domain structure (coastal, valley, valley/mountain, all regions) is 

maintained in the development and testing of JP_U.  As an example, JP_U for the 

valley/mountain domain is developed such that it might remain valid for a 

valley/mountain setting such as the Panjshar Valley/Hindu Kush Mountains of 

Afghanistan, but not for a coastal setting. It will be shown that the main differences 

among domains in JP_U are the probability maps themselves rather than the parameter 

pairs used. 

 It cannot be known for certain how truly universal these joint parameter maps are 

without a validation process involving other climatologies, which is not performed in this 

work.  Obviously, the variances of the universal joint parameter maps are lower than 

those in JP_B (sometimes by more than 50%).  However, they are presented as a 

practical alternative to JP_B for use in other climates or seasons much different from the 

training data.   

 The JP_B post-processing map for the valley region, which uses as it parameter 

pair saturation vapor pressure deficit and layer 1 vapor pressure depression, is not 

believed to be particularly specific to the local climatology of the test sites.  Therefore, no 
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JP_U experiment is performed in this region.  The JP_U experiments for the coastal, 

valley/mountain, and all regions domains are presented below. 

a. Coastal Optimization  

  Figure 81 shows post-processing maps for the coastal region believed to 

provide more universal function than the 2-m vapor pressure predictions used in JP_B.  

JP_U once again leverages the more accurate 2-m predictions in this region, using 2-m 

RH paired with virtual temperature deficit for the joint space. 

We saw in RH_P that 2-m RH is a reasonable predictor of fog, especially 

as it pertains to ruling out fog when predicted RH values are low.  Output probabilities 

generally increased at higher predicted RH values, but topped out at only 0.252 at the 

highest RH predictions (for the lowest βe) in that experiement, barely higher then 

climatological incidence of 0.200 for the entire plot.  Figure 81 shows we might improve 

resolution at these high RH predictions by utilizing the predictions of virtual temperature 

deficit.  This variable was used in the valley/mountain domain and the all regions domain 

of JP_B partly for its value in predicting radiation inversions crucial for fog in the valley 

region.  In the coastal region, it is also believed to signaling marine boundary layer 

stability as determined by the air-sea temperature difference.  This function was 

performed by the 2-m vapor pressure predictions in JP_B, but virtual temperature deficit 

appears to be an adequate substitute for this purpose that is likely less location-specific. 

The mechanism by which this variable indicates stability conditions near 

the coast is fundamentally the same as with a radiation inversion in a valley: the 2-m 

temperature predictions will have values in between the layer 1 predictions and the 

surface (soil or sea) temperature in the member, and so negative deficits are an indication 

that the surface temperature is likely colder than the layer 1 temperature in the member, 

and a stable lower boundary layer exists.  A stable boundary layer alone is not sufficient 

for fog in the coastal region, but Figure 81 indicates an incidence >0.4 at the lowest βe 

threshold if the predicted RH is also >0.8. 
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Figure 81.   Same as in Figure 71, but for the coastal region.  The parameters are virtual 

temperature deficit and 2-m RH. The rows correspond to each of the four βe 
thresholds, increasing from top to bottom. 
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Of course, this region is heavily influenced by the stability over water, but 

the sites themselves are still on land, and are accordingly affected by diurnal radiative 

forcing.  Nighttime radiation inversions certainly do exist and play a part in the predictive 

usefulness of virtual temperature deficit predictions.  Figure 81 indicates that the 

incidence of fog is very low when predicted virtual temperature deficits are >0.5 K, 

which tend to occur with either cold outbreaks (during which the marine boundary layer 

is unstable) or post-sunrise radiative heating of the land.   

An important consideration to the predictions at the coastal sites is that 

they are bi-linearly interpolated from two NWP model grid points over land and two over 

water.  We will not explore all the implications this might have, but in regard to lower 

boundary layer stability predictions, they represent some mixture of the offshore marine 

layer structure and the terrestrial structure within a few kilometers of the coast.  Whether 

this is a beneficial or detrimental configuration is not known, but the virtual temperature 

deficit predictions seems to offer some measure of the stability that, when paired with the 

2-m RH predictions, provide a useful joint parameter space for post-processing.  Note 

that the behavior of the virtual temperature deficit predictions could change if, instead of 

a bi-linear interpolation, the nearest grid point to the site were used thereby rendering the 

influence of radiative forcing stronger (if the nearest point were over land) or weaker (if 

it were over water).  

b. Valley/Mountain Optimization  

  A more universal joint parameter space was sought for the 

valley/mountain domain that might have more certainty in its transferability.  Joint 

parameter space that can effectively separate the mountain predictions from the valley 

predictions are generally found to provide the highest variance in output probabilities 

since the predictions from each region otherwise tend to dilute each other.  Layer 1 RH 

was found to be the most promising among universal options, and is paired with virtual 

temperature deficit to comprise the JP_U test for this domain (Figure 82).  
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Figure 82.   Same as in Figure 71, but for the valley/mountain domain.  The parameters are 

virtual temperature deficit and layer 1 RH. The rows correspond to each of the 
four βe thresholds, increasing from top to bottom. 
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In JP_B, layer 1 vapor pressure predictions in the joint parameter space 

served the role of parsing the mountain data from the valley data, providing a relatively 

undiluted portion of the space in which virtual temperature deficit predictions could be 

used to detect likely radiation inversions in the valley region.  The questionable 

transferability of this space stems from the fact that the range of vapor pressures for 

which the inversions appear important (>6 hPa) and for which fog can be virtually ruled 

out (<4 hPa) would seem to be dependent on the general temperature and moisture 

climatology of the domain.  For instance, the applicability of the JP_B map is not entirely 

clear if the background climatology were increased 5–10 K with proportional increases in 

moisture (as might be expected in a different locale or season).  In this hypothetical 

scenario, perhaps the range of critical vapor pressures indicated by the map would need 

adjustment to account for the changes.  Alternatively, it could be that mountain fog would 

in fact be more likely in this scenario and the JP_B map is reasonably applicable in 

assigning high probabilities prescribed by the higher vapor pressure predictions.  Unlike 

the coastal domain, where the JP_B map is believed to closely dependent on local water 

temperature, the location-specificity of the JP_B map in this domain is less clear and 

warrants further examination. 

Compared to JP_B, there is significant unavoidable overlap of predictions 

from each region in the joint parameter space of JP_U, resulting in its variance being 

54% lower than that of JP_B.  The degradation is most evident at upper portions of the 

space, where the mountain data contains a substantial amount of high RH predictions that 

have reduced fog probabilities by approximately 0.2–0.3 at the lowest βe threshold (0.29 

km-1) compared to JP_B.  

Still, the majority of the mountain predictions have layer 1 RH values 

<0.6, possibly providing adequate separation of the two regions’ predictions and giving 

this map some merit in the combined domain for the promise of better transferability.  

The cross-validation results will show that moderate dilution of the post-processing map 

caused by overlapping of the two regions’ predictions is more forgiving in the valley 

region than it is in the mountain region. 
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c. All Regions Optimization 

  Detecting inversions using predictions of virtual temperature deficit from 

the NWP model has been shown to be effective in the individual coastal and valley 

regions, as well as the combined domains.  In JP_B, this parameter was paired with layer 

1 vapor pressure to effectively parse the mountain predictions from the rest of the data.  

For JP_U, we use virtual temperature deficit paired with layer 1 RH (Figure 83), just as 

we did in the valley/mountain domain.  Adding the coastal predictions to this map does 

not produce drastic changes to the output probabilities compared to Figure 82, with the 

most significant change being the lowering of probabilities when the predicted virtual 

temperature deficit is >0 (i.e., inversions are not predicted, which rarely result in 

observed fog in the coastal region).  The use of layer 1 RH instead of 2-m RH (which is 

more accurate and generally has more predictive usefulness than layer 1 in the coastal 

region) is due to its better compatibility with the valley fog data.  Since fog in the valley 

region is most likely with layer 1 RH predictions of 0.7–0.8, the negative biases of the 

coastal region layer 1 RH predictions cause many of its observed fog data to be located in 

the same portion of the space. 
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Figure 83.   Same as in Figure 71, but for the all regions domain.  The parameters are virtual 

temperature deficit and layer 1 RH. The rows correspond to each of the four βe 
thresholds, increasing from top to bottom. 
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B. VERIFICATION METHODOLOGY 

 To verify the experiments, the most difficult test is sought without an 

unreasonable computational demand.  A modified version of “leave one out” cross-

validation is used, with the predictions grouped along the mode that produces the most 

variation in output among the groups (and therefore likely the lowest verification skill in 

cross-validation). 

 With the exception of SCW, each of the experiments listed in Table 6 involve a 

development process during which optimal thresholds or joint parameter space maps 

were designated based on the entire set of predictions subject to the post-processing (i.e., 

every prediction with qc <8.5 x 10-4 g m-3).  Cross-validation is the process of dividing 

the data into a developmental portion, for which the thresholds or maps are re-optimized, 

and a testing portion, for which the re-optimized technique can be verified on data 

independent of its development (Stull, 1988).  This provides some indication as to how 

much overfitting has occurred during development, and therefore how well the technique 

might predict outcomes when employed with new input data. 

 To improve the fidelity of the verification, cross-validation can be performed 

multiple times, where the developmental and testing portions of the data are changed 

each time, and the verification results of each of these repetitions are averaged.  “Leave 

one out” is a special case of this type of verification where the number of repetitions is 

equal to the number of predictions, and the testing portion of the dataset is a single 

prediction that changes with each repetition.  The result is that each prediction is tested 

exactly once using developmental data from all the other predictions. 

 A proper leave one out cross-validation requires a tremendous computational 

demand for large datasets and is not feasible here.  Therefore, the number of repetitions is 

reduced by verifying each of several groups of predictions exactly once using 

developmental data from the other groups, and averaging the results.  To group the 

predictions, three modes were considered: groupings by member, by site, and by case 

day.  The variance of output probabilities from the all regions domain post-processing 

map in JP_B was computed among the groups for each of the three grouping modes.  

This variance, as well as the probability output map for each group, are shown in Figure 
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84 (grouping by member), Figure 85 (grouping by site), and Figure 86 (grouping by case 

day – for brevity, only maps from selected case days are shown). 

 

 

 

 
Figure 84.   Observed fog (red) and no fog (blue) plotted in the all regions domain joint 

parameter space of JP_B for each member.  Contouring is based on bin sizes 
equaling one-twelfth of the total data in each plot.  The variance of the probability 

output among all the plots is shown in the bottom panel.  The first six hours of 
each case are excluded. 
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Figure 85.   Same as in Figure 84, but for each site. 
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Figure 86.   Same as in Figure 84, but for selected case days.  The variance plot shows the 

variance among all 29 case days. 
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 As is shown in the figures, rarely does the domain of predictions for any 

individual map cover the entire joint parameter space represented by all the data.  For 

example, the JP_B map for KRNO (Figure 85) does not include any predictions, and 

therefore has no probability output, for layer 1 vapor pressure predictions >9 hPa.  To 

account for this, the variance at any point in the space is calculated using only the maps 

producing probability output at that point; maps without data at the point were left out of 

the computation. 

 Among the three modes tested, there is comparatively low variance in probability 

output among the members (Figure 84), and so this mode is ruled out for grouping the 

predictions for cross-validation.  The variance among the sites (Figure 85) has two local 

maxima in the space, both corresponding to predicted temperature inversions (where the 

virtual temperature deficit is <0).  This first of these is at vapor pressures of 4–5 hPa, 

where the higher variance is caused by overlapping valley data (with high fog 

probabilities) and mountain data (with low fog probabilities).  The second local 

maximum occurs near 8 hPa, which is dominated by predictions from the coastal and 

valley sites.  This portion of the space produces low fog probabilities in the coastal region 

(where the incidence of fog does not significantly increase until predicted vapor pressure 

is >9 hPa), and high fog probabilities in the valley region, together accounting for the 

larger variance. 

 Variance among the case days (Figure 86) shows very high variance at predicted 

vapor pressures >13 hPa.  However, this portion of the space represents relatively few 

predictions and is therefore of less importance than portions of the space with higher data 

density.  For this reason, the increased variances near the center of the plot are of more 

significance, and unlike with the variances among the sites, the region of higher variances 

among the case days extends to the positive side of the x-axis; that is, when predictions of 

vapor pressure depression are >0.  These typically correspond to low fog probabilities 

associated with post-sunrise heating or (in the coastal region) cold air outbreaks.  

However, there are several cases (e.g., 29 Nov, 2 Dec, 11 Jan) when valley fog persisted 

past sunrise, well after the predicted inversion was destroyed, creating high fog 

probabilities in those cases and increasing the variance in the output probabilities in that 
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portion of the joint parameter space.  Since this portion of the plot also has high data 

density, the increased variance there is significant. 

 In order to measure the total variance of the entire joint parameter space for each 

mode, weighted by data density, the variance at the location of every prediction in the 

joint space was summed and averaged.  The results are shown in Table 9.  Although the 

groupings by site produced a larger area of high variance near the center of the joint 

parameter space, the variance among the case days is higher in the portions of high data 

density, resulting in the highest overall variance among the three modes.  The same 

calculation was performed on each mode using the coastal domain map and the 

valley/mountain domain map from JP_B5, with the case day mode producing the largest 

variance in each domain. 

Table 9.   Total variance of probability output for individual JP_B joint parameter 
space maps when grouped along each of the three modes.  The variance of 
each map is computed by averaging the variances at the location of each 

prediction in the joint space.  The data for the coastal domain and 
valley/mountain domain includes predictions from members 15 and 17.  

Mode All Regions 
Domain 

Coastal Domain  Valley/Mountain 
Domain 

Grouping by Member 0.0064 0.0038 0.0051 

Grouping by Site 0.0575 0.0013 0.0740 

Grouping by Case 
Day 

0.0623 0.0552 0.0862 

 Based on these results, “leave one out” cross-validation is performed along the 

case day mode, such that each case day is verified using the post-processing technique 

that was optimized with data from the other 28 case days.  This is true for all aspects of 

the optimization for each experiment in Table 6; for example, in BiasRH_D, the bias and 

the optimal threshold are computed for each repetition from the 28 case days of 

developmental data prior to verifying the one case day of testing data.  Using this same 

approach for all the experiments permits valid comparison among techniques.  The single 

                                                 
5 The variance calculation in these two domains includes predictions from members 15 and 17.  It is 

believed their removal would not convincingly change the conclusion that the largest variance is achieved 
when the predictions are grouped by case day. 
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exception is SCW, for which no cross-validation is required because there is no 

optimization or training of the technique.  For this experiment, the technique is verified 

by simply applying it to all the predictions. 
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VI. RESULTS 

 The results of the cross-validation, which are presented separately for each region, 

are given in Figures 87–100.  Table 10 summarizes the organization of the results among 

these figures. 

 To facilitate comparison among the experiments, each figure contains the plotted 

results from all the experiments, using the symbols and line types given in Table 6 (for 

convenience, Table 6 is reprinted here as Table 11).  Discussion will mainly focus on the 

RPSS (Figures 87 and 88) and the verification results at the lowest βe threshold 

corresponding to a daytime visibility of 6.5 mi (Figures 89–91), but the results at the 

other three βe thresholds are also included in the suite of figures and are referenced when 

notable.   

 In a few instances, BSSs for certain experiments are significantly lower (values <-

3) than the majority of the results shown, and these are often not plotted or only partially 

plotted.  This is especially common at the higher βe thresholds (2.75 and 0.875 mi 

daytime visibility) in the mountain region, where several of the techniques performed 

poorly.  Instead, results of these poorest-performing experiments are adequately captured 

by their verification at other βe thresholds, as well as the RPSSs shown in Figure 87, 

which includes all the experiments for each region.  
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Table 10.   Summary of results figures.  

Figure 
Number 

Region Description 

87 All RPSS across all four βe thresholds in each region, zoomed 
out to show all data 

88 All Same as above, but zoomed in to show detail for highest-
performing experiments 

89 Coastal 
Reliability, resolution, uncertainty, and BSS at lowest βe 
threshold (0.29 km-1) 

90 Valley 

91 Mountain 

92 Coastal 
Reliability, resolution, uncertainty, and BSS at second βe 
threshold (0.41 km-1) 

93 Valley 

94 Mountain 

95 Coastal 
Reliability, resolution, uncertainty, and BSS at third βe 
threshold (0.68 km-1) 

96 Valley 

97 Mountain 

98 Coastal 
Reliability, resolution, uncertainty, and BSS at fourth βe 
threshold (2.10 km-1) 

99 Valley 

100 Mountain 
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Table 11.   (Reprint of Table 6) Summary of post-processing techniques tested, with 
symbols used in figures 87-100.  All the techniques are first developed and 
tested without regional specificity, and some are then refined for specific 

regions or region combinations, which are listed. 

Symbol Name Description Optimization 
Domains 

 Cntrl Unaltered NWP predictions N/A 

 SCW Small, non-zero cloud water values All regions 

 RH_D RH threshold, deterministic All regions, coast, 
valley, valley/mountain 

 BiasRH_D RH threshold with 2-m temperature 
bias correction, deterministic 

All regions, coast, 
valley, valley/mountain 

 RH_P RH, probabilistic All regions, coast, 
valley, valley/mountain 

 BiasRH_P RH with 2-m temperature bias 
correction, probabilistic 

All regions, coast, 
valley, valley/mountain 

 JP_B Joint parameter space, best overall All regions, coast, 
valley, valley/mountain 

 JP_LB Joint parameter space, large bins All regions 

 JP_SB Joint parameter space, small bins All regions 

 JP_U Joint parameter space, best universal All regions, coast, 
valley/mountain 

Line Type Used in Results to Denote Domain Optimization 

 All regions domain 

 Individual coast or valley domain 

  Combined valley/mountain domain 
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Figure 87.   Cross-validation Ranked Probability Skill Scores in the coastal (top), valley 

(center), and mountain (bottom) regions for each experiment.  Plotted symbols are 
used according to Table 6.  Solid lines indicated experiments optimized for all 
regions, dashed lines (in the coastal and valley regions) are optimized for that 

specific region, and dotted lines (in the valley and mountain regions) are 
optimized for the valley/mountain domain. 
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Figure 88.   Same as Figure 87, but zoomed in to show more detail for the best-performing 

experiments. 
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Figure 89.   Cross-validation reliability (top), resolution (center), and Brier Skill Score 

(bottom) at the lowest βe threshold (0.29 km-1) in the coastal region for each 
experiment.  In the center panel, the uncertainty is indicated with the dashed light 

green line. 
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Figure 90.   Same as in Figure 89, but for the valley region. 
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Figure 91.   Same as in Figure 89, but for the mountain region.  Note that in the bottom panel, 

the y-axis extends to lower values than in Figure 89 and Figure 90 to 
accommodate especially poorly-performing experiments in this region. 
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Figure 92.   Same as in Figure 89 (coastal region results), but at the second βe threshold (0.41 

km-1). 
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Figure 93.   Same as in Figure 90 (valley region results), but at the second βe threshold (0.41 

km-1). 
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Figure 94.   Same as in Figure 91 (mountain region results), but at the second βe threshold 

(0.41 km-1). 
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Figure 95.   Same as in Figure 89 (coastal region results), but at the third βe threshold (0.68 

km-1). 
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Figure 96.   Same as in Figure 90 (valley region results), but at the third βe threshold (0.68 km-

1). 
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Figure 97.   Same as in Figure 91 (mountain region results), but at the third βe threshold (0.68 

km-1). 

 

0 

0 .05 

0.1 

0 .15 

=- 0.2 

""' -~ 
1!! 0 .25 

0 .3 

0 .35 

0 .4 

0.45 
2 4 6 

0 .25 

0 .2 

0 .15 

~ 
1>l 
2! 0 .1 

0 .05 

0 

0 5 

0 

- 0 .5 

(f) 
- 1 

(f) = 
- 1 .5 

-2 

- 2 .5 

-3 

2 

8 10 12 

fo recast hour 

I 
1 2 

Fo recast h o ur 

fo recast h o ur 

14 

14 

* 

1 6 1 8 

*""'' 1 6 1 8 
1111 

20 

M: 
20 



 187

 
Figure 98.   Same as in Figure 89 (coastal region results), but at the fourth βe threshold (2.10 

km-1). 
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Figure 99.   Same as in Figure 90 (valley region results), but at the fourth βe threshold (2.10 

km-1). 
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Figure 100.   Same as in Figure 91 (mountain region results), but at the fourth βe threshold 

(2.10 km-1). 
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1. Overview and Comparison to Cntrl 

 We will first make some general observations about the results, and then examine 

each experiment in more detail in the next sections.  Figure 88 indicates that most of the 

techniques tested in this work add some degree of skill to the stochastic ensemble 

predictions in the coastal and valley regions.  In the coastal region, the improvement is 

evident at most forecast hours and is achieved via a combination of reliability and 

resolution increases at each βe threshold (Figures 89, 92, 95, and 98).  Reliability 

increases are not surprising since the NWP predictions have a negative qc bias and each 

post-processing technique can only maintain or increase (but never decrease) the 

probability of βe exceedance for any given forecast hour.  Resolution improvement is 

more encouraging because it suggests the post-processing technique is effective at 

making larger upward probability adjustments to prediction corresponding to observed 

fog cases than those corresponding to observed no-fog cases.  In contrast, if a technique 

indiscriminately increases probabilities, it might improve reliability but will not improve 

resolution, similar to what would be produced by a purely statistical bias correction to the 

final predicted probabilities from the ensemble 

 All of the techniques except SCW improved prediction skill in the valley region 

from 9–17 h (Figures 90, 93, 96, and 99), which corresponds to the period of highest 

observed fog incidence and least reliability of the unaltered NWP predictions.  Reliability 

improvements are readily obtained by simply increasing the probabilities during this 

period, leading to a large portion of the skill increase for many of the experiments.  

Some, but not all, of the techniques also produced resolution improvements.  The post-

sunrise hours are characterized by a split in the results, with some of the joint-parameter 

techniques able to maintain a reliability (and skill) advantage over Cntrl, while most of 

the single-parameter RH techniques have lesser skill due to reliability decreases as the 

observed fog incidence decreases. 

 None of the techniques examined produce appreciable skill increases in the 

mountain region at any βe threshold (Figures 91, 94, 97, and 100).  Although modest 

resolution improvements are evident in some experiments, reliability decreases for each 
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experiment at every hour for every βe threshold.  This confirms the supposition that the 

framework in which these techniques exists—namely, making only upward adjustments 

to βe probabilities when fog is not predicted by the member—are ill-suited for use in the 

mountain region because fog is relatively rare and the NWP predictions lack the negative 

qc bias present in the other regions.  Consequently, the overall viability of each technique 

can only be examined in the context of reconciling skill improvements in the coastal 

and/or valley regions with skill reductions in the mountain region.  

2. SCW 

 In general, the resulting skill of SCW deviates only slightly from Cntrl in the 

coastal and valley regions, with slightly larger skill reductions at increasing βe thresholds.  

However, closer examination reveals that the technique produces resolution improvement 

that was counteracted by reliability decreases, particularly at lower βe thresholds.  This is 

especially evident in the valley region during the overnight hours (Figure 90), where 

SCW occasionally has the highest resolution of any experiment. 

 These results indicate the small, non-zero qc predictions are more likely to exist 

during observed no-fog cases.  The upward adjustments of output probabilities in SCW 

are disproportionately applied to observed no-fog cases, which causes reliability 

reductions but resolution improvements.  Since the probability adjustment prescribed by 

SCW rarely exceeds 0.2, the trend of all the metrics throughout the forecast period closely 

mimics Cntrl (e.g., low reliability overnight followed by post-sunrise increases in the 

valley region), unlike many of the other experiments.  But the mechanism behind these 

small, non-zero qc predictions, which do appear to have predictive usefulness for fog, 

deserves further examination.  It does not appear to represent a systematic behavior of 

WRF but rather the behavior of two specific members using the Ferrier microphysics 

scheme. 

 The resolution improvements produced by SCW must be attained via a presently 

unclear linkage to observed fog incidence.  Recall that over 99% of the small, non-zero qc 

predictions from these two members have qc values <1.68 x 10-9 g m-3 (about six orders 

of magnitude less than the lowest verification threshold of 8.5 x 10-4 g m-3).  With such 
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small values, in addition to the fact these predictions are negatively correlated to 

observed fog compared to qc predictions exactly equal to zero, it is unlikely they are a 

purposeful fog prediction from the NWP model. This represents a promising research 

path, which might explore the physical linkage between small, non-zero qc predictions in 

the Ferrier scheme and observed low fog incidence, and more broadly examine which 

microphysics schemes are best suited for fog prediction. 

 In the mountain region, SCW resulted in the smallest skill decreases of any 

experiment, caused by small but consistent decreases in reliability coupled with mostly 

unchanged (or in some cases, slightly higher) resolution (Figures 91, 94, 97, and 100).  

The comparatively strong performance of SCW is attributed to the relatively modest 

probability adjustments associated with this technique, as well as the fact that small, non-

zero qc predictions occur with less frequency (compared to zero qc forecasts) in this 

region compared to the coastal and valley regions (Figure 22–Figure 24). 

3. RH_D and BiasRH_D 

 Using a single 2-m RH threshold as a deterministic fog predictor for each 

member, as was done in RH_D and BiasRH_D, generally performed poorly compared to 

other experiments (Figure 87).  As implied by JP_U (Figure 81), RH predictions alone 

can be a useful predictor of fog in the coastal region, but are significantly more skillful 

when paired with a second parameter such a virtual temperature deficit.  Without such a 

pairing and in a deterministic framework, RH_D and BiasRH_D still produced modest 

resolution improvements over Cntrl, with higher resolution achieved when the critical 

RH threshold is optimized for the region (dashed lines) as opposed to all the regions 

(solid lines), as shown in Figure 89 for example.  Any resolution gain is more than offset 

by reliability decreases, which is attributed to extremely aggressive probability 

adjustments that assign an exceedance probability of 1 (at the lowest βe threshold of 0.29 

km-1) to over half of the member predictions subject to post-processing.  Although the 

unaltered NWP predictions have a strong negative qc bias in the coastal region, RH_D 

and BiasRH_D are insufficiently discerning, affecting the majority of observed fog cases 

as well as too many no-fog cases. 
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 The results show that the 2-m temperature bias correction employed in BiasRH_D 

had a positive effect in the coastal region in both reliability (Figure 89) and overall skill 

(Figure 87), with the largest effect over RH_D when tuned specifically for the region.  

Recall that the regional tuning in BiasRH_D includes not only the critical threshold, but 

also the bias correction itself, which is more than 2.5 times larger in the coastal region 

than in any other domain tested.  The improvements produced by the bias correction can 

only be due to RH predictions from the WRF slightly below the critical threshold prior to 

the bias correction that were adjusted above the threshold after the correction.  This 

disproportionately affects predictions at lower temperatures, since their RH values will 

increase more given a fixed downward temperature correction.  Therefore, the 

improvement of BiasRH_D over RH_D indicates that RH predictions just below the 

critical RH threshold are disproportionally likely to be associated with fog at colder 

predicted temperatures.  The opposite is true in the valley and mountain regions, which 

have more modest 2-m temperature bias corrections but where RH_D generally 

outperforms BiasRH_D (Figure 87).  Regardless, even with the reliability improvements 

achieved by the temperature bias correction in the coastal region (Figure 89), its RPSS is 

still well below zero at all hours and lower than other experiments (Figure 87). 

 In the valley region, both experiments lead to RPSS >0 during some overnight 

hours, regardless of the domain used for optimization (Figure 88).  This is remarkable 

considering the optimal RH threshold is a reverse classifier when optimized for the valley 

region (dashed lines), but not when optimized for the all regions domain (solid lines) or 

valley/mountain domain (dotted lines).  The result illustrates the severity of the negative 

qc bias in the valley region during the overnight hours when the observed fog incidence is 

highest; simply increasing the probabilities by even a crude technique yields skill 

improvements via reliability increases (Figure 90).  Beyond 8 h appreciable resolution 

improvements (Figure 90) are only achieved by RH_D and BiasRH_D when optimized 

for the valley region (which employs the reverse classifier). 

 The performance of RH_D with valley region optimization is particularly 

noteworthy, with an RPSS that exceeds Cntrl from 8–17 h (Figure 88), and is among the 

top performing experiments during this period in terms of both RPSS and resolution at 
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the lowest βe threshold (0.29 km-1, Figure 90).  However, none of the deterministic RH 

techniques perform well after sunrise in the valley region, with BSSs dropping well 

below zero after 17 h regardless of the optimization domain (Figure 90).  

 In the mountain region, RPSSs for both RH_D and BiasRH_D are well below 

zero, making these techniques unviable for indiscriminate use across a variety of 

geography within a model domain (Figure 87).  In a clearly defined valley region or for a 

point forecast where overnight radiation fog is a concern, RH_D could be justified as a 

very simple fog classifier for overnight predictions to apply to members not already 

predicting fog. 

4. RH_P and BiasRH_P 

 Conceptually, the use of probabilistic post-processing should outperform a 

corresponding deterministic framework since it should more thoroughly sample the 

prediction error compared to the sampling achieved by the 10 individual member 

predictions.  This is supported by the results of RH_P and BiasRH_P in the coastal 

region, where the RPSSs of these two experiments are significantly higher than their 

deterministic counterparts, RH_D and BiasRH_D (Figure 87). The probability 

adjustments prescribed by RH_P and BiasRH_P in this region are generally within +/-

0.15 of the climatological incidence of fog for the entire subset of data subject to post-

processing, and they produce only small resolution improvements compared to Cntrl 

(Figure 89).  No clear resolution advantage over RH_D and BiasRH_D is evident.  

However, their reliability is superior to Cntrl at most βe thresholds, and significantly 

higher than the reliability of their deterministic counterparts at all βe thresholds (Figure 

89).  Since the forecast probability map for all regions optimization is similar to that for 

coastal optimization (Figures 68-70), the coastal region results show small sensitivity to 

the domain optimization for RH_P and BiasRH_P compared to domain sensitivity in 

RH_D and BiasRH_D (Figure 87). 

 In contrast, large differences between the forecast probability map of all regions 

optimization and valley optimization were evident in Figures 68-70, and are reflected in 

the reliabilities of RH_P and BiasRH_P in the valley region when optimized for the 
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various domains (Figure 90).  When optimized for the all regions domain or the 

valley/mountain domain, overnight predictions of low RH have smaller upward 

probability adjustments than predictions with high RH, which is exactly the opposite of 

what is observed in the valley region and of what is prescribed when valley optimization 

is used.  This has the effect of producing comparatively lower reliabilities, but the impact 

on resolution is small or even slightly positive compared to when optimized for the valley 

domain.  Overall, RH_P and BiasRH_P for all optimizations have higher reliabilities 

(Figure 90) and RPSS (Figure 88) than Cntrl from 5-18 h, and mostly higher RPSS than 

their deterministic counterparts.  The exception is RH_D with valley optimization, which 

outperforms the probabilistic RH techniques during the overnight hours.  While the 

overnight differences are small between the deterministic and probabilistic RH 

techniques in the valley region, the probabilistic techniques offer a clear advantage after 

sunrise. Cntrl slightly outperforms the probabilistic techniques after sunrise, but 

significantly outperforms the deterministic techniques, whose skill decreases drastically 

during this period. 

 The impact of the 2-m temperature bias correction in the BiasRH_P experiments 

compared to the RH_P experiments is less than in BiasRH_D compared to RH_D (Figure 

88).  This is because in a probabilistic framework bias correction typically alters output 

probabilities by only a few percent instead of deterministically changing a prediction to a 

fog forecast if the RH threshold is exceeded (i.e., changing the probability from 0 to 1).  

As in the deterministic framework, the probabilistic RH experiments show no clear 

pattern as to whether the bias correction aids in the final predictive skill, exhibiting mixed 

results depending on the region, forecast hour, and optimization domain. In general, bias 

correction in this work can be quite important, particularly in a deterministic framework, 

but without further examination the precise impact on any given forecast is inconclusive.   

 As with RH_D and BiasRH_D, RH_P and BiasRH_P do not achieve positive 

RPSS at any hour in the mountain region (Figure 87), and so a universal application is 

not viable without first pre-defining region categories and excluding mountainous regions 

from the post-processing. 
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5. JP_B and JP_U 

 The primary advantage of JP_B and JP_U over the single-parameter techniques 

of earlier experiments is their post-sunrise performance in the coastal and valley regions, 

which maintains equal or better skill compared to Cntrl in contrast to the skill decreases 

seen in most previous experiments (Figures 87 and 88).  This results from the virtual 

temperature deficit predictions, which offers an additional degree of freedom such that 

the output probability adjustments can be appropriately scaled back during post-sunrise 

heating.  For the optimization domains in these two experiments that do not use virtual 

temperature deficit as a parameter, a similar parameter (saturation vapor pressure deficit 

in JP_B with valley domain optimization, and time rate of change of 2-m virtual 

temperature in JP_B with coastal domain optimization) is used that serves a similar 

function. 

 JP_B  and JP_U produce higher skill than Cntrl for the entire period between 7-

17 h in both the coastal and valley regions (Figure 88).  However, during the overnight 

hours they have only marginally higher skill than some of the single-parameter 

techniques in these regions.  The exception is JP_B with region-specific (i.e., coast or 

valley) optimization, which achieves the highest skill of any experiment in each 

respective region at nearly all hours.  In the coastal region, JP_U with all regions 

optimization performs just as well as JP_B optimized for the same domain, indicating 

there is no clear advantage to using layer 1 vapor pressure predictions instead of layer 1 

RH as a predictive parameter.  Since RH is considered a more universal (i.e., 

transferable) parameter than vapor pressure, this is a promising finding.  For coastal-only 

applications, the use of 2-m RH (used in JP_U with coastal optimization) instead of layer 

1 RH (used in JP_U with all regions optimization) in the joint space produces a slight 

skill advantage after sunrise, but otherwise the affect is minimal.  The skill improvements 

achieved by JP_B and JP_U are produced by both reliability and resolution gains in the 

valley region at most βe thresholds, with these gains diminishing after sunrise but 

remaining competitive with Cntrl. 
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 Similar to the results in the coastal region, JP_B seems to offer no appreciable 

advantage over JP_U when using all regions optimization in the valley region, ever after 

sunrise.  Even when using valley/mountain optimization in these experiments, there is 

little difference in the results from when using all regions optimization (which uses the 

same joint parameter pairs as valley-mountain optimization), suggesting that the addition 

of coastal region predictions to this joint parameter space has little effect on the valley 

region output probabilities.  Significant skill improvements over Cntrl in the valley 

region are obtained mostly via reliability improvements with the exception of JP_B with 

valley optimization, which also produces significant resolution gains during the overnight 

hours.  Since the parameter pair used in JP_B with valley optimization (consisting of 

saturation vapor pressure deficit and layer 1 vapor pressure depression) is also believed to 

be universal (i.e., transferable to other valley regions outside the testing locale), this is 

clearly the most viable post-processing technique among those tested for valley-only 

applications. 

 Thus far, none of the experiments tested have achieved skill gains or even positive 

RPSSs in the mountain region. JP_U produces positive skill only during the last few 

hours of the runs, yet is still significantly less skillful than Cntrl.  JP_B, when optimized 

for the all regions domain, is also less skillful than Cntrl but does manage positive skill 

beyond 10 h.  We can only conclude that JP_B is the only acceptable framework for use 

in the mountain region in the sense that it does the least harm to the existing NWP model 

skill while still outperforming persistence. It may also carry substantial risk of being 

location-specific.  Because there is no acceptable universal parameter pair that produces 

positive skill in the mountains, the best alternative is to not employ any of the post-

processing techniques developed in this work in the mountain region.  It should be noted 

that generally the joint parameter techniques did not destroy resolution in the region, but 

all of the experiments (with their upward adjustments to fog probability) resulted in 

reliability decreases due to the very low incidence of fog in the subset of data subject to 

post-processing, as well as the already high reliability of Cntrl. 
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6. JP_LB and JP_SB 

 The bin sizes in JP_LB are more than double the size of those in JP_SB (2490 

versus 1107 predictions, respectively), yet the two experiments produce BSSs that vary 

only slightly from each other or from JP_B.  Conceptually, to the extent that they do not 

overfit the training data, smaller bins are preferable because they leverage finer details of 

the joint parameter space to provide more predictive resolution at the expense of a some 

reliability.  As bin size is decreased to the point that resolution gains no longer offset 

reliability losses in cross-validation, the bins have overfitted the training data and there is 

no benefit to reducing the bin size further. 

 Results from these experiments show that there is no consistent reliability or 

resolution advantage for JP_LB or JP_SB at any βe threshold compared to JP_B, with 

only subtle signals in certain regions and hours.  For example, JP_SB has slightly lower 

reliability, resolution, and BSS than JP_LB and JP_B at βe = 0.29 km-1
 after 15 h in the 

valley region (Figure 90), perhaps indicating minor overfitting.  But any differences are 

small or negligible, allowing us to conclude that this particular joint parameter space has 

little sensitivity to bin size within the range of bin sizes tested.  We suspect any 

sensitivity to bin size is more important when smaller bins are used, but as this work aims 

to develop a post-processing framework that is transferable the use of conservatively 

large bins is appropriate until further testing or a proper optimization can be performed.  

These results suggest there is no single optimal bin size for all scenarios, as overfitting 

appears to emerge sooner in certain regions and forecast hours as bin size is decreased. 

 In addition to altering the bin size, other binning strategies exist that might better 

capture signals in the joint parameter space.  The strategy used in this work of having a 

fixed number of predictions for the bins was selected for its relative simplicity and 

apparent effectiveness after some preliminary testing.  However, a more sophisticated 

strategy was also considered that assigned a weighted influence of each prediction based 

on its distance, r, from the prediction of interest in the parameter space.  The weighting 

itself, defined as 1/rx, was found to be extremely sensitive to the choice of x; a 

conservative value of x = 1 produced results with virtually no resolution, while x = 2 
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clearly resulted in overfitting.  With further refinement, this or other binning strategies 

might improve the results achieved here. 

7. Summary and Additional Discussion 

 The joint parameter techniques outperform all other techniques during the post-

sunrise hours in the coastal and valley regions.  The expansion from single-parameter RH 

techniques to the joint parameter space permits one of the parameters in the joint 

parameter techniques to be used to identify the switch from a nighttime to a daytime 

regime.  This is crucial for preventing rapid skill decreases post-sunrise, because the 

nature of the NWP model error is different before and after sunrise.  The single-

parameter techniques are not able to discern the switch from night to day, but produce 

overnight skill that is competitive or slightly better than the joint parameter techniques. 

 Virtual temperature deficit is used in most of the joint parameter techniques to 

serve as a delineator between night and day.  This parameter is favored over more 

obvious choices such as temperature or temperature change because it appears to have 

predictive usefulness for forecasting the presence of low-level inversions.  In addition, it 

is proposed to have the added benefit of indicating the stability condition of the marine 

boundary layer, which is also crucial for fog prediction near the coast. 

 The results show that distinguishing coastal regions from valley regions for the 

purposes of post-processing is not necessary to achieve skill improvements in both 

regions.  This is because JP_U produces similar results in the coastal region whether it 

has coastal optimization or all regions optimization, and produces significant skill 

improvement in the valley region.  To achieve even greater skill in valley-only 

applications, JP_B with valley optimization is prescribed, whose parameters are universal 

and which offers the largest skill improvement of any technique. 

 When using all regions optimization, JP_B did not achieve appreciably higher 

skill than JP_U in the coastal or valley regions.  Both of these experiments use virtual 

temperature deficit as one of the joint parameters, but it is paired with layer 1 vapor 
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pressure in JP_B and layer 1 RH in JP_U.  The substitution appears to only affect skill in 

the mountain region, which is lower in JP_U. 

 The success of JP_U supports the finding of Hippi et al. (2010).  Using 

temperature, moisture, and wind measurements near the surface and at 500 m elevation at 

two stations in Finland, they showed that the two best fog predictors were the 

temperature difference between the surface and 500 m, and surface RH.  We extended 

this finding to the NWP model predictions space, showing that using predictions of 

virtual temperature deficit and layer 1 RH as fog predictors also accounts for the error 

characteristics of the NWP model. 

 None of the techniques tested in this work improve the already skillful unaltered 

NWP model predictions in the mountain region, and except for the non-universal joint 

parameter space of JP_B, none of the techniques even produce sustained positive skill in 

this region.  Therefore, if applying one of these post-processing techniques to a large 

geographical domain that includes mountainous topography, it is appropriate to pre-

define the mountainous region and exclude it from the post-processing.  The boundaries 

of such a region would seem to be defined arbitrarily, and perhaps a better approach is to 

gradually decrease the influence of post-processing as the topography transitions to 

mountainous from some other region category.  Either way, further research is needed to 

develop more objective criteria that can discern a mountain region and its characteristic 

NWP model behavior from other regions. 

 For all the probabilistic experiments (RH_P, BiasRH_P, JP_B, JP_LB, JP_SB, 

and JP_U) conservatively large bins were used to minimize the risk of overfitting the 

training data.  This is likely to have sacrificed some resolution in the results, which can 

be obtained using smaller bins. The results of JP_LB and JP_SB indicate overall 

reliability, resolution, and skill have low sensitivity to bin size in the range of bin sizes 

used, so larger variations are indicated to draw more definitive conclusions regarding the 

optimal bin size.  Absent a formal bin size optimization, the use of a larger bin size is 

preferable in the sense it appears to make the exact choice of bin size rather irrelevant to 

the results. 
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 In addition to using large bins to minimize overfitting of the training data, several 

other measures were taken in this work to attempt to maintain as much transferability as 

possible in the prediction framework.  These include 1) restricting the use of predictors to 

those with a clear thermodynamic linkage to fog, and excluding those whose linkage 

might be speculative or vary by location, 2) seeking joint parameter pairs that are 

believed to possess a high universal quality, and 3) performing cross-validation along the 

mode with highest variance in post-processing output.  Despite these measures, this study 

encompasses only a single winter season at seven sites, and merely lays the groundwork 

for a larger validation of its findings before its true transferability can be known. 
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VII. SUMMARY, RECOMMENDATIONS, AND FUTURE WORK 

A. SUMMARY AND ADDITIONAL DISCUSSION 

The goal of this research was to investigate the viability of a new framework for 

producing short-term (<20 h) probabilistic VIF predictions using existing mesoscale 

ensemble output suitable for use in data-denied areas away from existing airfields.  The 

4-km grid spacing, 10-member WRF ensemble used was constructed to closely match the 

specifications of the AFWA MEPS. 

 Two distinct sources of error were investigated in fog prediction using the 

ensemble.  The first was error in the qc predictions, which existed as a large negative bias 

in the coastal and valley regions due to excessive zero or near-zero qc forecasts from each 

WRF member at the expense of predictions of light fog with visibilities 1–7 mi.  The 

predictions in all regions also had highly bimodal distributions such that most of the fog 

predictions were for heavy fog with visibility <0.875 mi.  The bimodality of the 

predictions was higher than the bimodality of the observations in the coastal and valley 

regions, but reasonably matched the bimodality of observations in the mountain region. 

 The second source of error stemmed from the conversion of qc to βe, which was 

sensitive to several unmodeled quantities including droplet size distribution.  To sample 

the uncertainty in the conversion of qc to βe, we built a parametric visibility 

parameterization based on the estimated uncertainty in field measurements from Kunkel 

(1984) and Gultepe et al. (2006).  Predictions in the range of visibilities of interest 

(approximately 1–7 mi) were found to have negligible sensitivity to visibility 

parameterization error due to the highly bimodal distribution of the qc predictions from 

WRF.  In the visibility range of interest, error in the qc predictions from WRF was 

therefore the primary source of error. 

 Despite the highly bimodal qc predictions and strong negative qc bias, the 

stochastic qc predictions from the ensemble were generally skillful compared to 

persistence in the coastal region but unskillful in the valley region.  The mountain region 

qc predictions did not exhibit large bias and were the most skillful of any region beyond 7  
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h.  After forecast initialization at 1600 LT, skill generally increased overnight in each 

region, then increased more slowly after sunrise through the end of the runs at 20 h (1200 

LT). 

 In the coastal and valley regions, the negative qc bias was traced to a negative RH 

bias, which was primarily caused by a warm bias that was worse during the overnight 

hours.  There was very little qv bias in either region except after sunrise, when a negative 

bias was present. 

 In the coastal region, the 2-m temperature and qv biases were equal to or greater 

than the biases at layer 1, but the predictions at 2 m had lower error variances.  In the 

valley region, 2-m temperature predictions had less warm bias and a moist qv bias 

compared to layer 1, with slightly lower error variances.  The 2-m predictions in the 

mountain region were significantly worse than the layer 1 predictions, with larger biases 

and error variances. 

 Post-processing of the WRF predictions focused on identifying and leveraging 

alternative aspects of the NWP model output with predictive usefulness for fog.  The 

strategy did not pursue site-specific calibration, but maintained a measure of 

transferability by targeting only systematic error characteristics of the WRF predictions, 

and using only aspects of the predictions with a close and recognizable physical link to 

fog. 

 Given the nature of the qc prediction error from WRF (large negative bias, highly 

bimodal distribution), the post-processing strategy made upward adjustments to the 

probability of βe exceedance (at four measured thresholds) for individual members 

predicting zero or negligible qc.  This simplified the strategy since adjustments were only 

made in one direction (upward), and potentially preserved the skill already achieved by 

the raw WRF predictions.  This strategy was not well-suited to the mountain region since 

it had different error characteristics (small moist bias, highest overall skill) than the 

coastal and valley regions.  All tested methods lack skill improvement in this region, 

where the predictions are already highly skillful.  A strategy with the capability to adjust 

βe exceedance probabilities up or down is better suited for potential skill improvement in 

the mountain region. 
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 A single-parameter method using 2-m RH predictions to predict βe threshold 

exceedance generally decreased skill in the coastal region, and increased overnight skill 

in the valley region.  In the valley region, overnight fog was less likely with high RH, and 

more likely with RH well below saturation.  This was because the warm bias and 

negative RH bias was worse on nights when fog is likely to form.  These biases also 

tended to be present at initialization prior to overnight fog forming, and not present prior 

to a night without fog. 

 In the coastal region, the single-parameter method was significantly more skillful 

when applied probabilistically to each member rather than deterministically, producing 

comparable skill to the raw WRF predictions.  In the valley region, the deterministic 

single-parameter method was just as skillful as the probabilistic method overnight, with 

the probabilistic framework being significantly more skillful after sunrise.  Applying a 2-

m temperature bias correction to the predictions prior to using the single-parameter RH 

methods had a positive small impact for the deterministic method in the coastal region, 

but had little impact otherwise. 

 The expansion of the single-parameter methods to a framework utilizing joint 

parameters from the member predictions was performed by first testing hundreds of joint 

parameter pairs for viability.  In each of four domains (coastal, valley, valley/mountain, 

and all regions), two parameter pairs were selected for full evaluation.  The best overall 

parameter pair was the one that produced the highest predictive resolution in the training 

data, but often (except in the valley domain) possessed predictive usefulness specific to 

the local climatology of the test sites.  The best universal parameter pair was the one with 

the highest predictive resolution among those possessing transferability to other locations 

with the same domain category. 

 The universal parameter pairs invariably included a moisture parameter such as 

RH or vapor pressure depression, and a low-level stability parameter.  Compared to the 

single-parameter methods, this joint parameter framework produced similar or slightly 

worse results during night, but much better results after sunrise, when predictive skill was 

difficult to achieve due to the higher skill of the persistence reference forecast.  The 

physical mechanism behind the improvement was the use of the low-level stability 
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parameter as an axis in the joint space, which indicated the likelihood of a low-level 

inversion, which when present generally indicated higher βe exceedance probabilities 

(depending on the value of the second parameter in the space).  When an inversion was 

not predicted by the member, fog was rare.  The inversions themselves were often due to 

radiative cooling of the ground, which normally ended shortly after sunrise and, if 

predicted by the MEPS member, moved the prediction to a different portion of the joint 

space with appropriately modified βe exceedance probabilities for a post-sunrise (or 

otherwise unstable) regime.  Low-level inversions were also be due to downward heat 

flux at the sea surface, which was indicative of a stable marine boundary layer and 

favorable fog condition for coastal sites. 

 For coastal region post-processing using the best universal parameter pair, there 

was very little advantage to using a coastal optimization (which used parameters of 

virtual temperature and 2-m RH) instead of all regions optimization (which simply 

replaced the 2-m RH with layer 1 RH).  2-m RH provided slightly higher skill after 

sunrise due to the lower error variances at 2-m compared to layer 1 in this region.  Both 

parameter pairs increased skill over the raw WRF predictions. 

 Skill in the valley region was improved over the raw predictions by also using the 

best universal parameter pair with all regions optimization.  In the valley region, the layer 

1 RH predictions were favored over the 2-m RH predictions for predictive resolution, 

despite increased dispersion present in the 2-m predictions.  The dispersion was due to a 

wide spread of qv biases among the individual members, which was less desirable than 

dispersion generated from increased error variance among consistently-biased members, 

and actually blurred the predictive signal in the 2-m predictions. 

 For valley-only applications such as a small model domain or a point forecast, 

even greater skill was produced using the best overall parameter pair with valley 

optimization.  This parameter pair, which includes saturation vapor pressure deficit and 

layer 1 vapor pressure depression, was also universal in the sense it is reasonably 

transferable to other valley-like domains. 

 Making a bias correction prior to applying the joint parameter framework showed 

a minimal impact and was generally unnecessary.  This is particularly true if the bias 
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correction produced a mostly linear response in the parameter pair, which would only 

cause the probability forecast map to shift along an axis but not change the post-

processing outcome. 

 When a joint parameter map is developed, the degree of overfitting of the training 

data is related the size of the bin used to compute the observed fog incidence at each 

point in the joint space.  We selected a conservatively large bin equal to one-twelfth of 

the total dataset to minimize the risk of overfitting.  When the bin size was increased 50% 

and decreased 33%, there was little change in the results, indicating low sensitivity to bin 

size when the bins are large.  Greater predictive resolution may be possible with 

significantly smaller bins, but reliability and resolution will suffer if bins are decreased 

too aggressively and overfitting occurs. 

   The implications of optimizing a post-processing routine on a subset of the data 

(i.e., predictions without fog), does not mean it was necessarily optimized to produce 

maximum skill when verified using the entire data set (i.e., when the post-processed data 

was combined with the member predictions that produced fog on their own).  However, 

the magnitude of the negative qc bias was large enough that 93.7% of the raw WRF 

predictions did not predict fog and were subject to post-processing.  Any degradation that 

might occur from the minor difference between datasets was likely small.  The largest 

impact might be in the valley region, which had the largest proportion of its total 

predictions not subject to post-processing (because the member predicted fog on its own). 

1. Broader Implications 

 This research has laid a path for a simple post-processing routine that can be 

easily applied to deterministic or ensemble output to improve visibility forecasting in fog 

in a coastal or valley geographical region without the need for any observational record.  

It has revealed several systematic deficiencies of WRF predictions relevant for fog 

forecasting, and demonstrated that applying a conservative statistical element that is not 

heavily site-specific can improve the skill of the predictions.  Furthermore, it has 

identified a physically-based mechanism for the predictive usefulness of the post-

processing, which considers both the error characteristics of the predictions and the fog 
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dynamics, such that it can be properly interrogated and refined as needed for other locales 

or as NWP model improvements are made. 

 Since the WRF ensemble used for this research closely resembles the AFWA 

MEPS, the post-processing framework developed here could be used to add skill to 

predictions of surface visibility restrictions due to fog. 

 Several systematic deficiencies of the WRF predictions were identified that might 

help inform future model development.  In addition, member-specific behavior revealed 

in this work could assist in evaluating physics suites unique to each member.  

 A broader verification using different test sites and seasons is needed to better 

gauge the transferability of the techniques developed in this work. 

B. RECOMMENDATIONS 

 To further verify the AFWA MEPS fog prediction improvement produced by this 

framework, experimental testing in a new model domain and/or different season is 

recommended for the best universal joint parameter (JP_U) framework with all regions 

optimization.  JP_U offers the best balance of skill improvement with the potential for 

transferability to other like regions (i.e., other model domains with coastal and/or valley 

geography).  It can be applied indiscriminately to both coastal and valley geography 

without the need to pre-define these regions and apply separate post-processing schemes. 

The forecast probability map (Figure 83) utilizes WRF predictions of virtual temperature 

deficit and layer 1 RH as its parameter pair. 

 For valley-only applications, greater skill was achieved by using JP_B with valley 

optimization, which is also considered highly transferable.  It uses a forecast probability 

map with a parameter pair of saturation vapor pressure deficit and layer 1 vapor pressure 

depression (Figure 76).  Further experimentation is warranted to verify the results in a 

different locale and/or season. 

 For a model-generated point forecast at the coast using this framework, there 

appears to be benefit to bilinearly interpolating the model data from the four surrounding 

gridpoints, which incorporates low-level stability predictions (via predictions of virtual 

temperature) from two points over land and two points water that are important to the 

success of the framework.  In contrast, using model data from only the nearest grid point 
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might degrade the performance of the post-processing since the stability condition will be 

dominated by either terrestrial or marine conditions depending on where the grid point is 

located.  

 For coastal-only applications, slightly greater skill was achieved and should be 

tested using virtual temperature deficit and layer 1 RH as a parameter pair according to 

the forecast probability map of JP_U with coastal optimization (Figure 81). 

 No post-processing presented in this work is recommended in a mountain 

geographic region, as it did not improve skill. 

 Using nonlinear regression to fit an expression to the joint parameter forecast 

probability maps was not part of this work, and is not needed for implementation as 

values can be interpolated from the map itself.  However, it might be recommended if the 

interpolation is computationally expensive in an operational setting. 

 For any operational fog forecasting or fog verification study, it is crucial to be 

aware of the two algorithms used by ASOS to produce visibility observations (see Table 

2 and accompanying discussion).  When the algorithm is switched near sunrise or sunset, 

reported visibility can quickly be reduced by half (if switching from night to day) or 

doubled (if switching from day to night).  Since the abrupt adjustment is not associated 

with any change in meteorological conditions other than ambient light, it is easily 

overlooked in forecasting and research. 

 C. FUTURE WORK 

 Future enhancements to a fog post-processing framework might produce a 

forecast PDF of βe rather than probabilities of exceedance at four fixed βe thresholds as is 

done here.  A PDF is preferable because it provides the entire uncertainty profile of the 

prediction, including the probability of exceedance at any given threshold rather than at 

predetermined thresholds.  Significant challenges exist to produce a βe PDF, including 

whether a reasonable curve of βe distribution can be drawn from the members that predict 

fog on their own.  This research suggests it cannot, which allowed us to ignore the PDF 

shape and use democratic voting to verify predictions at each βe threshold since most 

predictions are either well above or below all thresholds.  An alternative approach is to fit 

the qc predictions from the members to a fixed, predetermined distribution shape 
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informed by the climatological distribution, which is not Gaussian (Figure 18.  Also 

Chmielecki and Raftery 2011).  The post-processing framework would also have to be 

refined to provide a PDF (or at least PDF parameters) rather than an exceedance 

probability as was done in this work.  Additionally, uncertainty in the visibility 

parameterization used to convert qc to βe could also be considered since it might make an 

important contribution to the PDF shape that was ignored in this work after showing it 

did not affect verification at four thresholds. 

 The unaltered MEPS members produced sufficiently high skill in the mountain 

region qc predictions that it is questionable as to how much more skill can be added, even 

with a more sophisticated post-processing strategy. Instead, an examination of WRF error 

and qc skill in the transition zones between region categories might lead to some 

objective criteria as to where these boundaries begin and end, or perhaps how they 

transition from one to the others.  This permits the post-processing to be easily excluded 

from these areas.  Without this information, mountain regions must simply be arbitrarily 

identified and avoided, with little understanding as to what constitutes a mountain region. 

 During MEPS development, H11 experimented with adding a form of stochastic 

backscatter to the model integrations, which is a way to represent model uncertainty from 

interactions with unresolved scales (Berner et al. 2009).  At that time, it added beneficial 

dispersion to the ensemble wind and temperature predictions.  It was ultimately not used 

in MEPS or in this work, but could improve the performance of this post-processing 

frameowork since it would produce larger dispersion in the post-processed forecast 

probabilities.  Most of the layer 1 and 2-m thermodynamic variables examined in this 

work are underdispersive, which ultimately decreases the skill of the predictions and this 

framework.  Hacker and Snyder (2012, personal communication) are preparing to test the 

impact of this capability on fog predictions. 

 Additional skill might be produced with the framework presented in this work 

simply by using smaller bins.  The results of this work show low sensitivity to rather 

aggressive bin size changes, perhaps suggesting the bins could be significantly reduced to 

improve resolution and perhaps reliability before overfitting occurs (manifest as declining 

reliability and resolution).  A larger testing dataset and robust cross-validation is 
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suggested for this purpose as it will inform how small the bins can be made before 

overfitting occurs.  The results in this work suggest overfitting does not occur across all 

predictions at once, but affects certain regions at certain forecast hours before others.  It 

is possible that with smaller bin sizes, post-processed skill decreases in the mountain 

region could be reduced or eliminated, negating the need to pre-define and exclude these 

regions from the framework and easing the framework’s operational employment. 

 Closer examination of the small non-zero qc predictions is warranted since results 

indicate that, compared to the prediction of exactly zero qc, they are disproportionally 

more likely during observed no fog.  The mechanism behind this predictive usefulness is 

not understood.  Nearly all of these small non-zero qc predictions are produced by the 

only two ensemble members using the Ferrier microphysics scheme, where they occur in 

>10% of the total predictions. 

 Examining WRF predictions above layer 1 might provide additional predictive 

usefulness to be leveraged.  This is particularly true given the inherent numerical 

challenges at layer 1, which is heavily influenced by information passed vertically from 

the land surface and surface layer below that is not necessarily seamlessly integrated into 

the model grid (Thompson, 2012 personal communication).  This phenomenon is 

analogous to the horizontal edge of a local area model, where boundary condition 

information being passed horizontally into the domain might negatively affect predictions 

at the edge as the modeled atmosphere conforms to the new resolution, physics suites, 

etc.  There are obvious disadvantages to using higher model layers, one being that fog is 

heavily influenced by surface conditions and higher model layers are further 

disconnected from the surface information.  But given the WRF systematic qc errors at 

layer 1, the potential benefits of using predictions at a higher layer may outweight the 

drawbacks, especially if utilized in the joint parameter space where they could be paired 

with predictions from a lower layer to leverage any useful predictive signal for fog that 

may exist. 
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APPENDIX A. POTENTIAL FOR 850-hPa WIND DIRECTION AS 
A HEAVY FOG PREDICTOR IN COASTAL REGION 

As one of the parameters evaluated for use in a parameter pair for the joint 

parameter space technique, 850-hPa wind direction predictions generally did not exhibit 

high predictive usefulness.  One prominent exception is with heavy fog prediction at the 

highest βe threshold of 2.1 km-1 (0.875 mi daytime visibility), for which 850-hPa wind 

predictions paired with 2-m vapor pressure predictions (Figure 101) produced the highest 

plot variance of any parameter pair, indicating that it may provide resolution specifically 

for predicting heavy fog. 

As was discussed in the JP_B experiment, the predictive usefulness of 2-m vapor 

pressure predictions is tied to the stability condition.  This parameter is paired with 

predicted 850-hPa wind direction to form the joint parameter space shown in Figure 101.  

The top row of the figure displays the data as in previous joint parameter plots, with 

heavy fog missed opportunities plotted in red and heavy fog correct rejections plotted in 

blue.  The data indicate heavy fog is significantly more likely when the 850-hPa wind 

direction is predicted to be northerly or northeasterly.  The forecast probabilities 

indicated by the contouring of this data are relatively modest, with a maximum value of 

0.2–0.3.  However, considering that the variance of the joint parameter plots for any 

parameter pair are generally much lower for heavy fog prediction than for prediction at 

the lower βe thresholds, the forecast probabilities indicated in Figure 101 provide a better 

separation between occurrences and non-occurrences than any other parameter pair 

examined. For comparison at this βe threshold, JP_B with coastal optimization (Figure 74 

bottom row) and JP_U with coastal optimization (Figure 81 bottom row) both produced 

forecast probability maps with smaller areas of forecast probabilities >0.2, which implies 

less resolution in the predictions. 

A physical explanation for the potential skill gained from 850-hPa wind direction 

predictions for predicting heavy fog is not fully explored in this work, but two possible  
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links are put forth.  Subjectively, the 850-hPa wind direction predictions have small error 

during these events, so heavy fog appears to be more likely with observed (not just 

predicted) northerly or northeasterly 850-hPa winds. 

 

Figure 101.   Same as Figure 71, but using 850-hPa wind direction predictions and 2-m vapor 
pressure predictions as the parameter pair.  The top row distinguishes heavy fog 
missed opportunities (red) from heavy fog correct rejections (blue).  The bottom 

row distinguishes heavy fog missed opportunities (red) from light fog missed 
opportunities (blue), and therefore displays the conditional probability of a heavy 
fog event given the occurrence of an unforecast (light or heavy) fog event.  Heavy 
fog is defined as exceeding the highest βe threshold of 2.1 km-1, corresponding to 

daytime visibility of 0.875 mi.  Light fog is defined as exceeding the lowest βe 
threshold of 0.29 km-1, corresponding to daytime visibility of 6.5 mi. 

As a first possible link, northerly or northeasterly 850-hPa winds seem to provide 

the ideal conditions for radiation fog at these sites.  These heavy fog events are 

characterized by calm or very weak northeasterly low-level winds, which are created with 

a surface high pressure center overhead or just offshore of the coastal sites. With weak 

vertical tilting, a high pressure center at 850-hPa would be expected just offshore of these 
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sites, creating northeasterly flow at this level.  Upper air analysis during times of the 

heavy fog events indeed show an 850-hPa high pressure center is often present just 

offshore of these sites. 

 A second explanation is that the mainly offshore nature of the 850-hPa winds 

during these events results in greater cloud condensation nuclei (CCN) at the sites, which 

increases N during fog events.  Various work (Thompson et al. 2008, Gultepe et al. 

2009b) has suggested fog existing in a maritime or generally unpolluted airmass tends to 

have lower values of N than fog in a continental airmass, or an airmass near an urban 

area.  This could reasonably be extended to include wind direction near the coast, where 

onshore winds are expected to advect lower N values from the maritime environment 

than offshore winds with a continental origin.  The importance of N is that for a volume 

with a given qc, many smaller droplets have a larger total cross-sectional area, and 

therefore larger βe, than fewer larger droplets (Koenig 1971, Brenguier et al. 2000, 

Gultepe et al. 2006).  Gultepe measured the relationship during RACE and found it was 

more precise than when N is ignored: 

 e  3.904(qc N )0.6473   (13) 

Depending on the airmass, recommended values of N vary in the literature 

between extremes of 40 cm-3 to over 300 cm-3, a range that produces βe changes that span 

several thresholds used in this work for a given qc.  In order to effectively use equation 

(13) for VIF prediction, more precise qc predictions are needed from WRF without 

excessive zero qc predictions.  However, even without the benefit of more accurate qc 

predictions, predictive information about N may have a role in a post-processing strategy.  

Predictions of N could be explicit from the WRF itself or deduced from other model 

variables. 

Perhaps a more appropriate use of information regarding N is to predicts 

conditional fog severity.  This concept is demonstrated in the bottom row of Figure 101, 

which used the same parameter pair as the top row applied to different datasets.  As in the 

top row, the red points represent heavy fog missed opportunities.  However, instead of 

plotting these cases with all other predictions that (correctly) do not include heavy fog, 

they are plotted against missed opportunities for all other (non-heavy) fog events.  The 



 216

probabilities in the plot therefore provide the conditional probability of heavy fog, given 

the occurrence of any unforecast fog event.  Forecast probabilities are as high as 0.5, an 

indication this parameter pair might have significant predictive value for identifying high 

probability of conditional heavy fog.  When properly used in a post-processing strategy, 

this conditional probability would be multiplied by the probability of all fog (i.e., at the 

lowest βe threshold), as determined by another parameter pair better suited for that task 

(for example, the parameter pair used in JP_U). 

The major advantage of using conditional probabilities in post-processing is that it 

can leverage certain parameters that have predictive usefulness for fog severity, but not 

necessarily for the presence of fog.  N may be one of these, but several other parameters 

could also have this trait. 

 The specific example used in this appendix is intended to illustrate the potential 

uses of wind direction, N, and conditional probabilities in post-processing, but Figure 101 

should not be considered a fully evaluated post-processing map since it has not been 

cross-validated.  Additionally, this post-processing map is not universal (i.e., has little 

transferability) since the predictive usefulness of wind direction is likely to be highly 

dependent on several site-specific characteristics, including orientation of the coastline. 
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